Metadata Search by Categories for ESG
Arie Shoshani

Feb 20, 2007

1. Introduction

Well-formed metadata are specified as object-level schemas, and can be implemented by a variety of tools. Some tools implement the schema on top of traditional database technology such as relational database management systems (RDBMS), and some may use other data formats (such as XML or RDB) in systems that support these format in a native form. Regardless of the implementation choice, there is a question of how to provide search tools over the metadata.

One obvious method is to allow keyword searches over all the text attributes of the schema objects, such as the description attribute for an ensemble, a dataset, or a file. This approach requires interfaces that expose these attributes, and knowledge by the user of what to search on, such as special words like “monthly means” or “volcano forcing”. Even if the interfaces were well-designed and easy to use, the problem with this approach is that the results are unpredictable: some entries may not be picked up because of differences in spelling, and some may come up unnecessarily. This is the well-known problem with general search tools like Google or Yahoo search engines. They rank the value of returned items by popularity or other indirect criteria, which is not useful in the case of ESG.
The alternative to free-form search is to have search by pre-specified categories. These category terms can be displayed to the user when they wish to express search criteria. Most web-based user interfaces today use this technique. Categorization is commonly used to classify a limited set of choices. For example, the category “state” in the US, will have 50 possible values: “Alaska”, …”Wyoming”. When the number of category values is large they are often organized as hierarchies. For example, diseases can be classified by organ (e.g. “lung”, “skin”, etc.) and then specialized to specific diseases (e.g. “lung cancer”). Similarly, objects sold in a supermarket can be classified as “milk-products”, “vegetables”, etc. and then specialized to specific items such as “milk”, “cheese”, etc. Furthermore, “milk” and “cheese” can be classified further into finer categories (non-fat-milk, etc.). An example in the ESG context can be experiments/Run which may be organized by year-performed or model-used. Such category hierarchies are also referred to as “classification hierarchies”. The data values (content) of such category hierarchies are often referred to as “ontologies”.
It should be obvious from the examples above that the targeted objects for the categorization can have multiple categories. For example, “lung cancer” can be categorized as “cancer” but also as ”respiratory-disease”. In the ESG contexts “datasets” can be classified by multiple categories (as was identified in the last metadata meeting), including: project, ensemble, scenario, experiment/run, model, model-component, time-frequency, and variable/quantity. For this reason, techniques have been used to represent a single object with a cross product of values in the categories. In ESG, a specific dataset is associated with values from the different categories. This methodology was used in various domains in the past, such as classification of books, and is referred to as faceted classification
. It is illustrated in Figure 1 in the ESG context. The category hierarchies are shown as a single level each, but can be, in general, multi-level. Multiple category values for each dataset are represented as a cross-product mapping from the leaves of the category hierarchies to the datasets, as shown with the broken-lines for one such case.
[image: image5.emf]… … … … … … … … … …

…

model-component

Atmosphere … ocean

scenario

Time-frequency

variable

…

… … … … … … … … … …

Category

Hierarchies

Cross Product

Mappings

Datasets

Files

Figure 1: category hierarchies and their mapping to datasets

[image: image1]
2. Supporting faceted classification structures

The mechanisms for mapping datasets to files already exist in ESG. They are part of the schema definition. The schema will in the future also include details of models, components, etc. However to support search by categories there needs to be a way to represent category hierarchies as well as the cross-product mappings. Thus, the schema must be enriched by adding the category hierarchies and a cross-product mapping object. For illustrative purposes, we suppose that these will be implemented using relational tables.
2.1 representing category hierarchies

Category hierarchies need to have a way of representing parent-child associations. To illustrate this concept consider the items shown in Figure 2 for products organized into a 3-level hierarchy. The top level, Level-0, is product category (fresh, processed), the second level, level-1 is product-group (fruit, vegetable belong to “fresh”, etc.), and the third level, level-2 contains the products (banana, etc.)
Note that in Figure 2, the second and first level labels repeat. Also, if there were additional levels, more columns will be required. For this reason, typical implementations organize the information as pointers to parents as well as levels, as shown in Figure 3. Another possibility for a more compact representation is to use object-IDs (usually an integer in the database) for each of the values, so that only the object-IDs repeat rather than the values.

[image: image2]
2.2 representing the cross-product mapping
The second structure that needs to be supported is the cross-product mapping. This can easily be represented as a single table with a column for each of the categories. The values in the columns must be from the leaves of the category hierarchies. This is shown in Figure 4.

[image: image3]
We note that in some categories multiple values are permitted. For example, a dataset may be associated with multiple model-components. Similarly, datasets usually have multiple variables associated with them. This implies the need to support multi-valued attributes. For such cases, it is best to “normalize” the structure by allowing each category that can assume multiple values to be represented in a separate table, and the corresponding join conditions performed when searched. This is an implementation detail that we do not pursue here further.
2.3 processing a category-based query

To process a query a user needs to select categories values for the categories. For each category the user may choose to select one or more values or leave it unspecified (meaning “all”). The selection for a value can be done at any level, not necessarily the bottom (leaves) level.

Once the selections are made by the user, the system needs to find all leaves for each of the categories specified in case that intermediate nodes in the hierarchy are selected. This requires an action of going down the hierarchy till all the leaves are found, and is referred to as the “transitive closure” operation. Essentially, by using the levels, one needs a procedure that finds all the leaves given an intermediate node in the hierarchy. This operation is considered important enough that some database vendors now provide a way of doing that. For example, it is supported in Oracle 9i
.

Given all desired values for each category, the cross-product table shown in Figure 4 can now be searched. The columns representing categories that were not specified (i.e. “all” was specified by default) do not have to be searched.
3. Implications to ESG

3.1 Implementation of the search engine

The support for general purpose faceted classification is a desirable goal in the long run, but a special purpose version for ESG will suffice. There are several items that make this special purpose approach attractive for ESG.

1) The representation of category hierarchies as levels as shown in Figure 3 provides the flexibility to add/modify/remove category values without any changes to the schema. Even new levels can be added or removed dynamically.
2) The category hierarchies in ESG are likely to be a single level or have very few levels. This makes it simple for the user to navigate. Single level hierarchies simplify the search by eliminating the need for a transitive closure function.
3) A function that can perform transitive closure is not hard to implement; it is a recursive navigation procedure till the leaf level is arrived. Since only a few levels are likely to be involved in ESG, it is not likely to present a performance bottleneck.

4) The representation of the cross-product mapping as a single table simplifies the SQL query performed – no need for multiple joins, since the categories are represented as columns.

5) For cases where multi-valued attributes are needed, normalized tables are desirable for performance reasons. Each will imply an extra join. This can be encoded into a template. It will be good to minimize these to the extent possible.
3.2 Caveats

Providing category search is a very attractive choice for ESG. It requires two activities. (1) Early on the category hierarchies’ ontology needs to be specified by domain experts, and have a chance for the process to iterate and converge. (2) The population of the cross-product mapping table is a non-trivial task. It is not clear how much of it can be automated. It may require a user interface for the selection of category values at the time that new datasets are introduced. Such an interface must be based on the ontology of the category hierarchies, and may have to be enforced on data providers.

3.3 User interface

Given the above methodology, a user interface can be designed to provide the categories as a list (probably vertically, given that there are about 10 categories). A mockup of the layout of such a user interface is shown in Figure 5. (This is similar to the user-interface Steve Hankin showed in the meeting, except that his columns headings (categories) are shown vertically). Each category can be clicked on, and a hierarchy (if any) is displayed, where each level can be further expanded. Once a selection is made, the value is shown in the box. Multi-valued selections can be shown as a scrollable list. When the “search” button is cliqued, the datasets found are displayed. At this point there needs to be a way for selecting a dataset, and further narrowing down the desired files, or aggregated subsets similar to what is available now in ESG.

[image: image4]
3.4 More powerful keyword searches

It is worth considering at this point free form keyword search as well. Assuming that such keywords will be run against text field in the metadatabase, this could be used as further restrictions on the datasets selected.
This capability can also be enhanced by annotating the category hierarchies’ values. To achieve this, an additional column can be added to the table in Figure 3, called “description”. It can have text descriptions that describe the category items. For example, the component “ocean-pop” could have a description “a global ocean model with a displaced pole grid using the POP (Parallel Ocean Program) model.” Thus, if the keyword “pop” or “displaced pole grid” is provided, this category will be found. The description can also be used to provide some information on the category term, when a “help” or “explanation” button is pressed.
5. Conclusions
Using the facet classification approach described above is a fairly powerful category-search capability that should be considered in the redesign process of the metadata capability. It can be implemented as a special purpose capability to simplify the task, once the schema design is agreed on. Taking this approach, changes to the categories’ ontology can be made without changing the schema design. The definition of the category hierarchies’ ontology is an important task that should start early. The data entry process for populating the cross-product mapping from categories to datasets will have to be streamlined, and become part of the tools provided to dataset providers.
�

��

�

�

� http://en.wikipedia.org/wiki/Faceted_classification

� http://www.oracle.com/technology/oramag/code/tips2003/060803.html

[image: image6.emf]Project

ensemble

scenario

experiment/run

model

model-component

time-frequency

variable/quantity

All All

All All

All All

All All

All All

All All

All All

All All

Dataset found

(First 7 out of 35)

DATASET 1

DATASET 2

DATASET 3

DATASET 4

DATASET 5

DATASET 6

DATASET 7

Figure 5: a mockup of a category-based search

Select desired categories search

[image: image7.emf]Project

ensemble

scenario

experiment/run

model

model-component

time-frequency

variable/quantity

All All

All All

All All

All All

All All

All All

All All

All All

Dataset found

(First 7 out of 35)

DATASET 1

DATASET 2

DATASET 3

DATASET 4

DATASET 5

DATASET 6

DATASET 7

Figure 5: a mockup of a category-based search

Select desired categories

[image: image8.emf]Dataset-ID project ensemble scenario experiment/run model model-component time-frequency variable/quantity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4: a table to represent the cross-product mapping of datasets to categories

[image: image9.emf]product

Product-

Group

Product-

category

banana

fruit

fresh

orange

fruit

fresh

apple

fruit

fresh

…

…

…

tomato

vegetable

fresh

broccoli

vegetable

fresh

…

…

…

cheese

Milk-product

processed

…

…

…

yogurt

Milk-product

processed

corn

canned-product

processed

…

…

…

beans

canned-product

processed

product

Product-

parent

banana

fruit

orange

fruit

apple

fruit

…

…

tomato

vegetable

broccoli

vegetable

cheese

Milk-product

yogurt

Milk-product

corn

canned-product

beans

canned-product

canned-product

processed

fruit

fresh

vegetable

fresh

Milk-product

processed

level

2

… … …

…

…

… … …

…

…

… … …

…

…

… … …

2

2

2

2

2

2

2

2

1

1

1

1

processed

fresh

0

0

Figure 2: a 3-level category hierarchy

Organized as 3 columns

Figure 3: a 3-level category hierarchy

Organized as 2 columns + level

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

