Evaluation of RDF/OWL and Sesame Triple-Store

for Data Searches in the Earth System Grid

ESG-CET Internal Memo

Luca Cinquini

March 2007

1. Introduction

This document represents a follow up to Arie Shoshani’s internal ESG memo “Metadata Search by Categories in ESG”, and builds upon the discussions that took place during the February 2007 ESG Metadata workshop at LBNL.

Arie’s document presents a clear and compelling argument (which will not be repeated here) in favor of developing a “faceted search” for ESG data, i.e. a search interface through which users find datasets of interest by selecting values for one or more predefined categories (e.g. model, component, scenario, etc.). In short, the document identifies the following requirements for the functionality that a faceted search must expose to the user, and the underlying domain model (see Figure 1 in Arie’s document):

1. There exist N searching categories, each of which contains multiple values.

2. Each category may have a hierarchical structure, starting with one root node and ending with multiple leaf nodes. In this case, values are associated with each node in the category tree.

3. Each dataset may be associated with none, one or more than one leaf node in each category (“cross-mappings”).

4. The user may be able to select one or more values for each category, at any level in the hierarchy (selection of a value at an intermediate level is equivalent to selecting all the values of the levels underneath).

This document will explore the possibility of implementing the above functionality by leveraging emerging semantic technologies like RDF/OWL for encoding the ontology of search categories, and triple-store repositories to persist and query the metadata. Two different approaches were prototyped, and are described below.

2. First Prototype

2.1 Ontology

Using Protégé [Protégé], a prototype OWL ontology [ESGonto] was developed that contains the following classes representing search categories: Model, Scenario, Parameter, ModelComponent, Grid and TimeFrequency (see Figure 1). As a proof of concept, the Model and Parameter classes were organized in a subclass hierarchy. For each bottom-level class, a few instances were created (for example, the instances CCSM_v1 and CCSM_v2 of class CCSM, which is a subclass of Model). Additionally, a Dataset class was created and assigned properties (i.e. predicates, i.e. relationships) pointing to all search categories (for example: (Dataset, hasModel, Model)). Appendix 1 shows how such a property would be encoded in OWL and in RDF/XML.

[image: image1.png]®NonCartesianGrid

@TimeFrequency
@ caresiancrid aan @scenario
— \
=~ '
]
~ ‘®ModelComponent
- ~ @ressure
@rcm ®Model ~a
- @parameter
[- -

Temperature
occsm o @Tempe

Figure 1: The test ontology used in prototypes 1 and 2 is almost exactly the same, the only difference being that the transitive property isPartOf that connects a Dataset to itself (represented by the blue circle in the diagram) is absent from prototype 1. This diagram was generated with Jambalaya, a plug-in to Protégé.

2.2 Triple-Store

The open-source Sesame [Sesame] triple-store server was installed on the local desktop and configured to use a MySQL database backend, with pure RDFS inference rules (i.e. minimal semantic rules operating on the relations rdfs:subPropertyOf, rdfs:subClassOf, rdfs:domain, rdfs:range) [RDFS] [1]. The database was populated programmatically by a Java program that generated 10,000 Dataset instances, each of which containing property values pointing to a randomly selected instance of each search category class. As a result, the database was loaded with 80348 triples in approximately 110 seconds.

2.3 Query

The Sesame custom query language (SeRQL) was used to formulate and execute queries intended to mimic a typical user search, possibly proceeding through several iterations of increasing number of restrictions.

For example, a very broad query could be:

· Q1) Select all atmospheric datasets: this query yielded 2436 results (approximately a quarter of the overall dataset population, since 4 model components instances were defined), and took 1673 msecs.

Or a much more refined query could be:

· Q2) Select all CCSM atmospheric datasets of a given IPCC scenario, that contain the variable air temperature and are defined on a cartesian grid, and have hourly frequency: this query yielded 19 results and took 275 msecs.

Appendix 2 shows the SeRQL syntax for the above queries.

2.4 Conclusions

This first prototype demonstrates a simple approach were the Dataset space is flat, and is populated with all the Dataset instances at a fixed level in the ESG dataset hierarchy (for example, the root datasets representing the full output of a model run, or the leaf datasets immediately above the datafiles). Each Dataset instance is assigned properties that are “inherited” from parent datasets, or “subsumed” from children datasets, so that the instances may be found when a corresponding category search is executed. The search results contain Dataset instances always at the same level (for example, the bottom-level datasets, which may be hyperlinked to the set of associated datafiles). This approach has the advantage of preserving the view that a user may tend to expect [2], but at the same time it lacks the flexibility of returning a different level of results depending on the query parameters. For example, if a user searches for all datasets that are part of a given IPCC scenario, it might be desirable to return top-level datasets (i.e. one single dataset per model per simulation); similarly, if a user constraints the search to a specific scenario, model component and time frequency, it might be desirable to return bottom-level datasets, i.e. datasets that are “closer” to the actual data. Such an approach is explored in the next section.

3. Second Prototype

3.1 Ontology

The ontology from the first study was modified by adding a transitive property isPartOf that points from a Dataset to another Dataset (see again Figure 1). This property allows the creation of arbitrary hierarchies of Dataset instances, where the properties defined for a dataset are logically inherited by all included (i.e. lower level) datasets. For the purpose of this study, we have assumed a 3-level hierarchy of Dataset instances (see Figure 2), where the top-level datasets are associated with a specific model and scenario, the mid-level datasets are component-specific and are associated with a defined set of parameters, and the bottom-level datasets represent different products characterized by a given time frequency and geophysical grid.

[image: image2.png]B e
ey

LEVEL1
hasModel 1000 instances.
hasScenario

LEVEL2

hasModelComponent 4000 Instances.
hasParameter

LEVEL3

hasTimeFrequency
hasGrid 12000 instances

Figure 2: Prototype 2 is based on the assumption that a standard dataset hierarchy (for example, composed of 3 levels) can be defined to encompass all ESG holdings. Appropriate search categories are associated at each level.

3.2 Triple-Store

A second repository for the same Sesame server was defined, which still used a MySQL database backend, but was configured to use OWL DL (OWL Description Logic) entailment rules (a richer set of semantic rules including transitive, symmetric and inverse properties, cardinality restrictions, etc.) [OWLDL]. The repository was programmatically populated with 1,000 top-level datasets, each of which associated with a random scenario and model; each top-level dataset included 4 (mid-level) component-specific datasets (atmosphere, ocean, land and ice), that were associated with one random parameter each; finally, each mid-level dataset was associated with 3 bottom-level datasets, associated with a specific grid and time frequency. Overall the model domain contained 17,000 (=1,000+4,000+12,000) datasets, which resulted in 96343 triples stored in the database.

3.3. Query

The same queries as before were executed for this prototype, with the following results:

· Q1) Select all atmospheric datasets: this query yielded 1000 “level-2” datasets, and took 646 msecs.

· Q2) Select all CCSM atmospheric datasets of a given IPCC scenario, that contain the variable air temperature and are defined on a cartesian grid, and have hourly frequency: this query returned 35 “level-3” datasets, and took 317 msecs.

3.4 Conclusions

This second prototype takes advantage of OWL richer semantic rules (for example, the possibility of defining a transitive “isPartOf” custom property) to enable a category-based search across a predefined Dataset hierarchy, without appreciable loss in performance with respect to the case of a flat Dataset space. It seems like the capability of returning results at a different level depending on the query values might be a desirable feature that would enrich the user experience. In the long term, other OWL semantic rules (or even custom rules) might be exploited as well. Note though that this approach will return consistent results only if all ESG data holdings can be made to conform to a standard Dataset hierarchy, were each level in the hierarchy is associated with one or more of the possible search categories.

Summary

Semantic open-source and freely available tools and technologies seem to have reached a level of maturity and performance to be a viable solution for implementing the next generation search functionality for ESG-CET. Of the two approaches that were prototyped in this study, the first one (based on pure RDFS inference and flat dataset space) is simpler and offers the less risks, but in the long term it might lack the power and flexibility offered by the second approach (based on OWL DL inference and hierarchical dataset space). It is recommended that ESG-CET moves on to a full-scale prototype, with a test web-based user interface and search services returning results from a triple-store repository populated with real data from the IPCC and NCAR metadata holdings.

Appendix 1

The relation (Dataset, hasModelComponent, ModelComponent) is encoded as follows in OWL (the namespaces are omitted for brevity):

<owl:ObjectProperty rdf:ID="hasModelComponent">

 <rdfs:range rdf:resource="#ModelComponent"/>

 <rdfs:domain rdf:resource="#Dataset"/>

</owl:ObjectProperty>

The same relation can be encoded as follows in RDF/XML:

<rdf:Description rdf:about="esg:hasModelComponent">

 <rdf:type rdf:resource="owl:ObjectProperty"/>

 <rdfs:domain rdf:resource="owl:Dataset"/>

 <rdfs:range rdf:resource="esg:ModelComponent"/>

</rdf:Description>

This relation is really equivalent to three triples of the form (subject, predicate, object), this time encoded in N-Triple notation:

<esg:hasModelComponent> <rdf:type> <owl:ObjectProperty> .

<esg:hasModelComponent> <rdfs:domain> <esg:Dataset> .

<esg:hasModelComponent> <rdfs:range> <esg:ModelComponent> .

Appendix 2

In prototypes 1 and 2, Query 1 may be expressed in SeRQL as follows:

SELECT d FROM {d} rdf:type {esg:Dataset};

 esg:hasModelComponent {esg:atmosphere}

USING NAMESPACE esg = http://www.earthsystemgrid.org/esg.owl#

In prototype 1 (no Dataset hierarchy), Query 2 may be expressed in SeRQL as follows:

SELECT d FROM {d} rdf:type {esg:Dataset},

 {d} esg:hasModelComponent {esg:atmosphere},

 {d} esg:hasScenario {esg:scenario_a},

 {d} esg:hasParameter {parameter},

 {d} esg:hasModel {model}, {model} rdf:type {esg:CCSM},

 {d} esg:hasGrid {grid}, {grid} rdf:type {esg:CartesianGrid},

 {d} esg:hasTimeFrequency {esg:hourly},

 {parameter} rdf:type {esg:AirTemperature}

USING NAMESPACE esg = <http://www.earthsystemgrid.org/esg.owl#>

But in prototype 2, leveraging the transitivity of the esg:isPartOf property, Query 2 can be expressed as follows:

SELECT dataset FROM {dataset} rdf:type {esg:Dataset};

 esg:hasTimeFrequency {esg:hourly};

 esg:hasGrid {grid};

 esg:isPartOf {parent1};

 esg:isPartOf {parent2},

 {parent1} esg:hasModelComponent {esg:atmosphere};

 esg:hasParameter {parameter},

 {parent2} esg:hasScenario {esg:scenario_a};

 esg:hasModel {model},

 {model} rdf:type {esg:CCSM},

 {parameter} rdf:type {esg:Temperature},

 {grid} rdf:type {esg:CartesianGrid}

USING NAMESPACE esg = <http://www.earthsystemgrid.org/esg.owl#>
Notes

[1] The Sesame server may be configured with multiple SAILs (Storage And Inference Layer), which abstract the details of the underlying storage medium and inference rules. Possible choices for the storage medium are in-memory, native files, MySQL and Postgres databases; possible choices for the inference rules include no inference, RDF semantics, OWL semantics, and custom inference.

[2] This functionality is similar to that exposed by traditional business web sites like Amazon or Google, where the type of results returned is always the same (a book, or a URL, respectively).

References

[ESGonto] The ontology OWL file used in this study is available at: http://dataportal.ucar.edu/schemas/ESG_test.owl and can be loaded in any OWL-aware editing tool, like Protégé or Swoop.

[OWLDL] http://en.wikipedia.org/wiki/Web_Ontology_Language/
[Protégé] http://protege.stanford.edu/

[RDFS] RDF semantic and entailment is discussed in detail at: http://www.w3.org/TR/rdf-mt/

[Sesame] http://www.openrdf.org/ .

