
Search Metadata
Storage and Sharing Considerations

Robert Schuler and Ann Chervenak

Background
In the federated ESG architecture currently being developed, metadata had been
divided into two classes. Each gateway will maintain a full metadata catalog (likely
using a relational database) for the data sets published at that gateway. In addition, a
subset of the metadata that is needed for data discovery, called search metadata, will
be harvested from the full metadata catalog and shared with the other gateways.
(Search metadata may be stored as RDF triples in a triple store.) Thus, each gateway
will receive search metadata from all the gateways, so that a client making a discovery
query at any gateway can locate the gateway(s) that host the data sets of interest. In
addition, the client may conduct more detailed searches based on the full metadata
catalog at the gateway that manages the desired data sets.

In earlier meetings and email threads, we discussed the need for a sharing mechanism
for the search metadata. The sharing mechanism would allow the search metadata to
be collected from each gateway and propagated in some manner to the other
gateways so that users at each gateway could find any collection of data throughout
the collaborating ESG sites. We discussed the possibility of using RDF for search
metadata, exploring OAI as a sharing mechanism, and also considering generalization
of the RLS state sharing and indexing mechanism for sharing the search metadata.

This document presents some considerations for the sharing mechanism between the
gateways and the global services.

Storage and Exchange Format
We may use the same or different data formats for storage and exchange. For
instance, we may store the search metadata in a relational database yet exchange it
in RDF format. Some RDF repositories take this approach. Alternately, the search
metadata could be stored in RDF also.

Time stamps
Each record in the search metadata repository, whether stored in RDB, RDF, or XML, will
need a minimal set of time stamps associated with it in order to share the metadata
among sites. For each record, we will need to know when the record was created and

1

when it was last updated. Depending on the sharing mechanism, we may also need to
know if it was deleted.

Master or Multi‐Master
In our federated use cases document from October 2007, we assumed a structure with
a single master in a master-secondary replication scheme where a global service acts
as the master and each gateway acts as a secondary site.

More recently, the ESG architecture has moved toward a multi-master scheme, where
each gateway acts as the master site for the data collections that it manages and the
related metadata, including the search metadata for those data sets. In this scheme,
each gateway replicates the search metadata for which it is the master at the other
gateways. In addition, each gateway acts as a secondary site for search metadata
that is managed at other gateways.

S

M

All

S

All

M

All

S M

All

S M

All

S
gateways

global services

Figure 1: left, each gateway updates a master copy of search metadata at a global service,
then the master copy is replicated to each gateway as a secondary copy; right, each gateway
updates its own master copy and then each gateway’s master copy of its search metadata is
replicated to the other sites as secondary copies. All, the full collection of metadata; M, the
master copy of search metadata; and S, the secondary copy of search metadata.

Update topology
In the case of the single master approach (see Figure 1, left), a natural update
topology is a star configuration, with updates harvested at each gateway and sent to
the single master, and then secondary copies replicated to each gateway. In the case
of the multi-master approaches (see Figure 1, right), the topology could be a dense,
fully-connected graph (as depicted) or a sparsely-connected, spanning tree in a P2P
fashion.

2

Figure 2: left, a star topology for updates where each gateway (clear boxes) updates a global
service (shaded box) and then replicas are pushed back to the gateways; center, a fully-
connected update graph where each gateway sends updates to all other gateways; right, a
sparsely connected update graph where updates are propagated along shorter edges.

Update frequency
Depending on the characteristics of the gateways, we may consider different update
frequencies for the master site (or sites) to update the secondary sites. If we expect
many small updates to the metadata, for instance from interactive user edits, then
small frequent updates may be appropriate. If we expect large batch-driven changes
to the metadata then a scheduled bulk update may be more appropriate. The
sensitivity to the lag time between metadata changes and accurate reflection at
secondary sites must also be considered.

Soft or Hard State
The secondary copy of search metadata at each site (in any master-secondary
scheme or update topology structure) can be considered soft or hard state. If it is a soft
state, then by definition, the search metadata is considered stale at some point and
expires. Thus, the search metadata needs to be refreshed periodically in a soft state
scheme. One consequence is an increase in network communication among sites.

Alternatively, if the search metadata is considered hard state, then we expect the
secondary copies to remain valid unless notified by the authoritative (master) site that
they should be invalidated.

In the case of soft state, we can avoid the need to propagate “deleted” search
metadata entries because they will be purged from the secondary sites eventually.
Another advantage of soft state is that if a gateway goes offline, its secondary copies
will expire. When the gateway reconnects, its search metadata can be quickly
reconstructed using normal soft state update mechanisms.

3

Compression
The Replica Location Service uses soft state mechanisms along with Bloom filter
compression to minimize the size of updates exchanged among RLS local catalogs and
index servers. One important consideration is that Bloom filter compression is a lossy
compression scheme. It performs hash functions and sets corresponding bits in a bit
map. So, for the RLS example, it is impossible to use a Bloom filter to retrieve the logical
file names that were used to create the Bloom filter. Queries on the Bloom filter are
performed by hashing the name and seeing whether the corresponding bits are set.

Bloom filter compression may not be an appropriate technique for use with search
metadata, since it may be desirable to share entire RDF triples among the gateways,
rather than just bitmaps representing hashed values for those triples.

We will try to evaluate the size of search metadata to be exchanged to determine
whether the size of these updates is prohibitive. In addition, we will explore the use of
lossless compression schemes for RDF triple information.

Full vs. Incremental Updates
Related to the frequency of updates and the type of information exchanged among
gateways is the question of whether full or incremental updates are appropriate. It may
be desirable to send incremental updates describing recent changes to search
metadata. Alternatively, if soft state is used, then search metadata will expire, and full
updates must be performed periodically to refresh the search metadata.

Software
Some existing software may provide at least part of the solution that ESG needs. These
include Open Archives Initiative (OAI) based software or RDF repositories. OAI specifies
the OAI Protocol for Metadata Harvesting (OAI-PMH). It specifies a client-server
architecture where “harvesters” (the client) request updated metadata from
“repositories” (the server). Using OAI implementations, each ESG gateway might setup
an OAI repository for their search metadata and then other sites (other gateways or the
global service) would run a harvester to collect metadata updates. Alternatively, open
source RDF repositories exist. “Boca” is a RDF repository developed by IBM and released
as an open-source project. It supports a central RDF repository with clients that can
cache the repository contents locally. ESG could explore the use of Boca where each
gateway (or the global service) runs a RDF repository and the other gateways act as
clients of the repository.

 OAI Tools: http://www.openarchives.org/pmh/tools/tools.php

4

http://www.openarchives.org/pmh/tools/tools.php

 Boca: http://ibm-slrp.sourceforge.net/2006/11/20/boca-the-rdf-repository-
component-of-the-ibm-semantic-layered-research-platform/

5

http://ibm-slrp.sourceforge.net/2006/11/20/boca-the-rdf-repository-component-of-the-ibm-semantic-layered-research-platform/
http://ibm-slrp.sourceforge.net/2006/11/20/boca-the-rdf-repository-component-of-the-ibm-semantic-layered-research-platform/

	Background
	Storage and Exchange Format
	Time stamps
	Master or Multi-Master
	Update topology
	Update frequency
	Soft or Hard State
	Compression
	Full vs. Incremental Updates
	Software

