
Basic plotting and
animation with VCS

What is VCS

• Visualisation and Control System

• VCS came before CDAT

• Python interface

• Only 1D or 2D graphics

• Plots or animations

• Outputs to screen, GIF, EPS, PS etc.

VCS Concepts and Terminology

Basic concepts:
• VCS Canvas – where the plots are drawn
• Graphic Methods – how the data is rendered (the

plot type). E.g. “boxfill”, “isofill”, “isoline”, “vector”,
etc,. Multiple projections may be available for a
given Graphic Method.

• Templates – define the location where things are
drawn on the canvas (data, legend, title, comments,
units, etc..)

• Primitives – additional secondary items such as
lines, polygons, text, markers, etc.,

The VCS Canvas

• VCS canvas needs to be initialized (created)
>>> x=vcs.init() # without any arguments

• Up to 8 Canvases at once.

• Canvas as “magic board”, can clean or destroy it:
>>> x.clear()
>>> x.close()

• Can have multiple plots on a single Canvas (not
covered here)

VCS Help

• Basic help on VCS can be obtain inline via:
>>> vcs.help()

• This will list available function in vcs, notably
functions to create/get/query vcs objects…

VCS First Help

This also can be used to get help on a specific command:

>>> vcs.help(‘createboxfill’)

Function: createboxfill
Construct a new boxfill graphics method

Description of Function:
Create a new boxfill graphics method given the name and the
existing boxfill graphics method to copy the attributes from. If no
existing boxfill graphics method name is given, then the default
boxfill graphics method will be used as the graphics method to
which the attributes will be copied from.

If the name provided already exists, then a error will be returned.
Graphics method names must be unique.

Graphic Methods Concepts (1)

• Essentially a graphic method represents
HOW data are going to be plotted (the
WHERE will be determined via templates,
see later)

• There are 13 type of graphic methods in VCS:
– 2D Graphic Methods

• Boxfill, Isofill, Isoline, Meshfill, Vector, Outfill,
Outline, Continents , (Taylordiagrams)

– 1D Graphic Methods
• Yxvsx, Xyvsy, XvsY, Scatter

Specifying a Graphic Method

To specify a graphic method use a “create”
function, then use plot:

• For example, for a boxfill:
>>> gm = x.createboxfill(‘name’)
>>> x.plot(data, gm)

• If a graphic method already exists, use “get”
functions:
>>> gm = x.getboxfill(‘name’)
>>> x.plot(data, gm)

• Replace ‘boxfill’ in the above for other methods.

2D - “boxfill”

• The boxfill graphic method takes a 2D array and
represents it by filling a “box” (determined by the
bounds on each axis values) with a color linked to the
array’s value at this location:

>>> box=x.createboxfill(‘new’)
>>> x.plot(data,box)

2D -“isofill”

• Isofill graphic methods draws filled isocontour
• They are extremely similar to boxfill “custom” type
• Known Limitation:

– No control on labels position
– No control on isolines “Smoothness”
>>> iso=x.createisofill(‘new’)

2D - “isoline”

• Isoline, draws isocontours, color, style, can be
controlled.

• Limitation:
– No control on the labels location
– No control of “smoothness”
>>> iso=x.createisoline(‘new’)

2D – “meshfill” – for generalised grids

• Meshfill is similar to boxfill “custom” but allows
representation of generalized grids, i.e. instead of
filling a box, “meshfill” fills cells, of “n” points

• Requires an additional array to be passed to
represents the “mesh”

• This array is
generated
automatically for
Transient
Variables
recognized by
cdms.

• Allows very
creative 2D plots.

2D - “vector”

• The “Vector” graphic method represents the
combination of 2 arrays, via “vector” the first array
representing the “X” axis component and the second
array representing the “Y” axis component.
>>> f=cdms.open(’sample_data/clt.bc’)
>>> u=f(‘u’)
>>> v=f(‘v’)
>>> vec=x.createvector(‘new’)
>>> x.plot(u,v,vec)

Taylor Diagram – comparing climate runs

• With the right set up you can create Taylor diagrams:

See the on-line tutorial: taylordiagram_tutorial.py

1D – Y(x) vs x

• All 1D plots in VCS basically work the same way.
There are 4 types of 1D graphic method, we’ll start
with the basic: Yxvsx, which stands for Y(x) vs x

• This graphic method draws a 1D array (Y) as a
function of its 1D axis (x)

• Example zonal mean of the first time point of our data
array
>>> zm=MV.average(data[0],1) # Zm.shape is (46,)
>>> x.plot(zm) # knows to plot 1D with yxvsx
>>> yx=x.createyxvsx(‘new’)

>>> x.plot(zm,yx) # same

1D - “VCS” Yxvsx attributes

• As in isoline, or vector, line, linecolor, linewidth,
determine the line.

• marker, markercolor, markersize, determine the
markers to be drawn:

>>> yx.line='dot'
>>> yx.linecolor=242
>>> yx.linewidth=2
>>> yx.marker='star’
>>> yx.markercolor=244

1D - “VCS” Xyvsx, Xvsy, scatter

Other 1D graphic method, work very similarly:

• Xyvsy does the same thing except the X and Y axes
are flipped relatively to a Yxvsx.

• XvsY is the same thing as YxvsX except it takes 2
data arrays (X and Y) as arguments, therefore the
values on the horizontal axis are not taken from the
“axis” definition of the Y array but from the values of a
first (X) array.

• Scatter basically works as XvsY except both X and Y
MUST have the same Axis!

Graphic Methods Attributes

>>> b=x.createboxfill(‘new_one’)
>>> b.list()

----------Boxfill (Gfb) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gfb # indicates the graphic method type:

Graphic Filled Boxes (Gfb)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
…
…

Graphic Methods plot functions

Graphic methods may also be selected by replacing the
‘plot’ method with the graphic method name:
>>> x.boxfill(data)
>>> x.isofill(data)
>>> x.isoline(data)
>>> x.vector(data)
>>> x.yxvsx(data)

etc...

• Note: an error is returned if the data structure(s)
incompatible with method.

The importance of squeezing data

• A common problem is confusion about the
shape of a data slab:
– You think you have 1D data but you have 4D data
– shape is (1, 1, 1, 4)
– array is [[[[13,15,18,14]]]]
– VCS uses first index of every leading dimension

until it gets a 2D array (if 2D specified)
Squeeze is the key:
>>> data=data(squeeze=1) # OR MAYBE...
>>> data=bigdata(lat=(90,0), squeeze=1)
>>> x.plot(data)

2D - World Coordinates – example attributes

• worldcoordinate attributes are present on all graphic
methods.

• can select a subset area.
• for example to visualise Africa:

>>> b.datawc_x1 = -45.
>>> b.datawc_x2 = 70.
>>> b.datawc_y1 = -38.
>>> b.datawc_y2 = 38.
>>> x.plot(s,b)

Projection attributes of Graphic Methods

Each graphic method may have a number of
projections, the full list is available from:

>>> v.show('projection')
************************Projection Names List*************************
(1): default linear mollweide
(4): robinson polyconic polar
(7): lambert orthographic mercator

************************End Projection Names List*********************

mollweide polar robinsonmollweide polar robinson

Selecting a projection

>>> import vcs
>>> x=vcs.init()
>>> iso=x.createisofill(‘newone’, 'ASD')
>>> iso.projection="polar"
>>> x.plot(var1, iso)

2D - Axes Transformations
Axis transformations allowed are:

• area-weighted, ln, log10, exp.

>>> box=x.createboxfill(‘new’)
>>> x.plot(data2, box)
>>> box.xaxisconvert=‘area_wt’ # Area weighted

representation of latitudes
>>> box.yaxisconvert=‘log10’ # Log of P

repres of Pressure dim
>>> x.plot(data2, box)

2D - Controlling the Y/X ratio of a plot

• ratio controls the Y ratio relative to X
• ratio=2 means Y will be twice X
• For data with spatial grids, the

‘auto’ value can be passed.
• To adjust the box and tick marks

use ‘autot’

x.plot(data,b,ratio=2) x.plot(data,b,ratio=‘auto’) x.plot(data,b,ratio=‘autot’)

Colormaps

• The colormap is the range of colours used in
any plot or animation.

• Colormap in VCS consist of 256 colors.

• Each colormap has a unique name
associated with itself.

• VCS is currently limited to ONE colormap at a
time, but if you clear your plot, you can use
multiple colormaps during the same session.

Colormaps from VCDAT
• The Colormap GUI let you easily pick/change colors

and color model

Introducing Templates (1)

• Template tell VCS WHERE to draw objects
on the canvas (whereas Graphic Methods
specify HOW to draw them).

• 4 aspects of the plot controlled templates:

– Text location for things like title, comments, name,
etc..

– Data area
– Tick marks and label locations
– Legend

Introducing Templates (2)
• Each element of the template (e.g “data”) can be

turned on/off or moved on top/below other elements
on the page via its “priority” attribute

• Template object are created via the “createtemplate”
command
>>> t=x.createtemplate(‘new’)

• All elements of a template object can be listed via the
list() function
>>> t.list()

• Alternatively, a single elements’s attributes can be
listed, e.g.:
>>> t.data.list()
member = data
priority = 1
x1 = 0.78400000234
y1 = 0.92734249999 ...

VCS Templates – useful methods

• Command line manipulation of entire
templates:

>>> templ.move(percent, axis)
>>> templ.moveto(x,y) # move the
data.x1,data.x2 corner to x/y

>>> templ.scale(scale,axis=‘xy’,font=-1)
scale the template along x,y,xy can
also scale fonts (automatic for xy
direction only)

VCS Templates
Simplifying your life!

• Setting up templates can be tedious!
• Recommend that you construct your template once,

save it and reuse it for ever.
• Use the VCDAT template editor to create them!

Animating at the command line

Just keep write a frame to a canvas, to gif and clear, then
do all over again…

>>> x=vcs.init()
>>> templ=canvas.gettemplate('BADC_ERA40')
>>> plot_type=canvas.getisofill(‘ASD’)

>>> for i in range(loop_num):
... x.clear()
... x.plot(data(time=slice(i,i+1)), templ, \

plot_type)
... x.gif(outfile) # Second arg of merge="a"

needed on some versions

Or call up GUI with x.animate.gui()

“Secondary” VCS Objects

Secondary VCS objects (primitives) consist of:
• Fillarea : polygons
• Lines
• Text
• Marker

An example use is using markers to plot station
data…

Overlaying images

• Overlaying is simple, just don’t clear the canvas
between plots, templates may need modifying…

Don’t really
want 2 legends
and titles
overlayed!!!

Other graphics packages

CDAT/Python objects can also be visualised in:
• xmgrace (1D plots) – ships with CDAT
• PyNCL (NCAR Command Language)
• PyNGL (NCAR Graphics Language)
• MatPlotLib (MatLab equivalent for Python)
• IAGraph (which is a layer on top of VCS)

	Basic plotting and animation with VCS
	What is VCS
	VCS Concepts and Terminology
	The VCS Canvas
	VCS Help
	VCS First Help
	Graphic Methods Concepts (1)
	Specifying a Graphic Method
	2D - “boxfill”
	2D -“isofill”
	2D - “isoline”
	2D – “meshfill” – for generalised grids
	2D - “vector”
	Taylor Diagram – comparing climate runs
	1D – Y(x) vs x
	1D - “VCS” Yxvsx attributes
	1D - “VCS” Xyvsx, Xvsy, scatter
	Graphic Methods Attributes
	Graphic Methods plot functions
	The importance of squeezing data
	2D - World Coordinates – example attributes
	Projection attributes of Graphic Methods
	Selecting a projection
	2D - Axes Transformations
	2D - Controlling the Y/X ratio of a plot
	Colormaps
	Colormaps from VCDAT
	Introducing Templates (1)
	Introducing Templates (2)
	VCS Templates – useful methods
	VCS Templates�Simplifying your life!
	Animating at the command line
	“Secondary” VCS Objects
	Overlaying images
	Other graphics packages

