
Climate Data Management
System

Version 3.3

Robert Drach, Paul Dubois, Dean Williams

Program for Climate Model Diagnosis and
Intercomparison

Lawrence Livermore National Laboratory

September 2002

UCRL-JC-134897

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or precess
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Table of Contents

CHAPTER 1 Introduction 9

Overview 9
Variables 9
File I/O 10
Domains and Axes 11
Attributes 11
Masked values 12
File Variables 13
Dataset Variables 15
Grids and Regridding 16
Time types 17
Plotting data 18
Databases 19

CHAPTER 2 CDMS Python Application
Programming Interface 21

Overview 21
Python types used in CDMS 22

A first example 23
cdms module 25

cdms module functions 25
Class Tags 32

CdmsObj 32
Attributes common to all CDMS objects 32
Getting and setting attributes 33

Axis 33
Axis Internal Attributes 33
partition attribute 34
Axis Constructors 35
Axis Methods 36

Axis Slice Operators 43

CdmsFile 44
CdmsFile Internal Attributes 44
CdmsFile Constructors 44
CdmsFile Methods 45
CDMS Datatypes 50

Database 50
Overview 51
Database Internal Attributes 52
Database Constructors 53
Database Methods 53
Searching a database 56
SearchResult Methods 58
ResultEntry Attributes 59
ResultEntry Methods 59
Accessing data 59
Examples of database searches 60

Dataset 61
Dataset Internal Attributes 61
Dataset Constructors 62
Open Modes 63
Template Specifiers 63
Dataset Methods 64

MV module 66
Variable Constructors in module MV 68
MV functions 69

RectGrid 72
RectGrid Internal Attributes 73
RectGrid Constructors 73
RectGrid Methods 74

Variable 80
cu interface support 81
Variable Internal Attributes 81
Variable Constructors 82
Variable Methods 85
Variable Slice Operators 94
Index and Coordinate Intervals 94
Selectors 95
Selector keywords 96
Selector examples 98

Examples 99

CHAPTER 3 cdtime Module 105

Time types 105
Calendars 106
Time Constructors 106

Time Constructors 107

Relative Time 108
Relative Time Members 108

Component Time 109
Component Time Members 109

Time Methods 109
Time Methods 110

CHAPTER 4 Regridding Data 113

Overview 113
Horizontal regridder 113
Pressure-level regridder 115
Cross-section regridder 115

regrid module 116
Regridder Constructor 116

regridder functions 117
Regridder function 120

Examples 121

CHAPTER 5 Plotting CDMS data in Python 127

Overview 127
Examples 127

Example: plotting a horizontal grid 127
Example: using plot keywords. 128
Example: plotting a time-latitude slice 129
Example: plotting subsetted data 129

plot method 130
plot keywords 131

CHAPTER 6 Climate Data Markup Language
(CDML) 135

Introduction 135
Elements 136

CDML Tags 136

Special Characters 137
Special Character Encodings 137

Identifiers 138
CF Metadata Standard 138
CDML Syntax 138

Dataset Element 139
Dataset Attributes 139
Axis Element 141
Axis Attributes 141
Grid Element 143
RectGrid Attributes 144
Variable Element 144
Variable Attributes 145
Attribute Element 146

A Sample CDML Document 147

CHAPTER 7 CDMS Utilities 149

cdscan: Importing datasets into CDMS 149
Overview 149
cdscan Syntax 150
cdscan command options 151
Examples 153
File Formats 153
Name Aliasing 154
Generating Metadata for a File 154

APPENDIX A CDMS Classes 155

APPENDIX B Version Notes 157

Version 3.0 Overview 157
V3.0 Details 158

AbstractVariable 158
AbstractAxis 158
AbstractDatabase 159
Dataset 159
cdms module 159
CdmsFile 159
CDMSError 159
AbstractRectGrid 159
InternalAttributes 159
TransientVariable 159
MV 160

APPENDIX C cu Module 161

Slab 161
Slab Methods 162

cuDataset 163
cuDataset Methods 163

CHAPTER 1 Introduction
1.1 Overview

The Climate Data Management System is an object-oriented data
management system, specialized for organizing multidimensional, gridded
data used in climate analysis and simulation.

CDMS is implemented as part of the Climate Data Analysis Tool (CDAT),
which uses the Python language. The examples in this chapter assume some
familiarity with the language and the Python Numeric module (http://
numpy.sf.net). A number of excellent tutorials on Python are available in
books or on the Internet. For example, see http://python.org .

1.2 Variables

The basic unit of computation in CDMS is the variable. A variable is
essentially a multidimensional data array, augmented with a domain and a
set of attributes. As a data array, a variable can be sliced to obtain a portion
of the data, and can be used in arithmetic computations. For example, if u
and v are variables representing the eastward and northward components of
Climate Data Management System 9

Introduction

10
wind speed, respectively, and both variables are functions of time, latitude,
and longitude, then the velocity for time 0 (first index) can be calculated as

>>> from cdms import MV
>>> vel = MV.sqrt(u[0]**2 + v[0]**2)

This illustrates several points:

• Square brackets represent the slice operator. Indexing starts at 0, so u[0] selects
from variable u for the first timepoint. The result of this slice operation is
another variable.

• Variables can be used in computation. ‘**’ is the Python exponentiation opera-
tor.

• Arithmetic functions are defined in the cdms.MV module.

1.3 File I/O

A variable can be obtained from a file or collection of files, or can be gener-
ated as the result of a computation. Files can be in any of the self-describing
formats netCDF, HDF, GrADS/GRIB (GRIB with a GrADS control file), or
PCMDI DRS. (Depending on your local installation, HDF and DRS may or
may not be enabled.) For instance, to read data from file sample.nc into vari-
able u:

>>> import cdms
>>> f = cdms.open(’sample.nc’)
>>> u = f(’u’)

Data can be read by index or by world coordinate values. The following
reads the n-th timepoint of u (the syntax slice(i,j) refers to indices k such
that i <= k < j):

>>> u0 = f(’u’,time=slice(n,n+1))

and this reads u at time 366.0:

>>> u1 = f(’u’,time=366.)

A variable can be written to a file with the write function:

>>> g = cdms.open(’sample2.nc’,’w’)
Climate Data Management System

Domains and Axes
>>> g.write(u)
<Variable: u, file: sample2.nc, shape: (1, 16, 32)>
>>> g.close()

1.4 Domains and Axes

The spatial and temporal information associated with a variable is repre-
sented by the variable domain, an ordered tuple of axes and/or grids. In the
above example, the domain of the variable u is the tuple (time, latitude, lon-
gitude). This indicates the order of the dimensions, with the slowest-varying
dimension listed first (time).

Each element of the tuple is an axis. An axis is like a 1-D variable, in that it
can be sliced, and has attributes. A number of functions are available to
access axis information. For example, to see the list of time values associ-
ated with u:

>>> t = u.getTime()
>>> print t[:]
[0., 366., 731.,]

1.5 Attributes

As mentioned above, variables can have associated attributes. In fact,
nearly all CDMS objects can have associated attributes, which are accessed
using the Python dot notation:

>>> u.units=’m/s’
>>> print u.units
m/s

Attribute values can be strings, scalars, or 1-D Numeric arrays.

When a variable is written to a file, not all the attributes are written. Some
attributes, called internal attributes, are used for bookkeeping, and are not
intended to be part of the external file representation of the variable. In con-
trast, external attributes are written to an output file along with the variable.
Climate Data Management System 11

Introduction

12
By default, when an attribute is set, it is treated as external. To see the list of
external attribute names:

>>> print u.attributes.keys()
[’datatype’, ’name’, ’missing_value’, ’units’]

The Python dir command lists the internal attribute names:

>>> dir(u)
[’_MaskedArray__data’, ’_MaskedArray__fill_value’, ..., ’id’,

’parent’]

In general internal attributes should not be modified directly. One exception
is the id attribute, the name of the variable. It is used in plotting and I/O, and
can be set directly.

1.6 Masked values

Variables can have an optional mask which represents a portion of
data that is missing. If present, the mask of a variable is an array of ones and
zeros, of the same shape as the data array. A mask value of one indicates
that the corresponding data array element is missing or invalid.

Arithmetic operations in CDMS take missing data into account. The same is
true of the functions defined in the cdms.MV module. For example:

>>> a = MV.array([1,2,3]) # Create array a, with no mask
>>> b = MV.array([4,5,6]) # Same for b
>>> a+b
variable_13
array([5,7,9,])
>>> a[1]=MV.masked # Mask the second value of a
>>> a.mask() # View the mask
[0,1,0,]
>>> a+b # The sum is masked also
variable_14
array(

data = [5,0,9,],
mask = [0,1,0,],
fill_value=[0,]

)

Climate Data Management System

File Variables
When data is read from a file, the result variable is masked if the file vari-
able has a missing_value attribute. The mask is set to one for those ele-
ments equal to the missing value, zero elsewhere. If no such attribute is
present in the file, the result variable is not masked.

When a variable with masked values is written to a file, data values with a
corresponding mask value of one are set to the value of the variable’s
missing_value attribute. The data and missing_value attribute are then
written to the file.

Masking is covered in Section 2.9. Also see the documentation on the
Python Numeric and MA modules, on which cdms.MV is based, at http://
numpy.sourceforge.net .

1.7 File Variables

A variable can be obtained either from a file, a collection of files, or as the
result of computation. Correspondingly there are three types of variables in
CDMS:

• A file variable is a variable associated with a single data file. Setting or refer-
encing a file variable generates I/O operations.

• A dataset variable is a variable associated with a collection of files. Reference
to a dataset variable reads data, possibly from multiple files. At present writing,
dataset variables are read-only.

• A transient variable is not associated with a file or dataset. The examples to this
point illustrate this type of variable. Transient variables result from a computa-
tion or I/O operation.

A typical use of file variables is to inquire information about variables in a
file without actually reading the data for the variables. A file variable is
obtained by applying the slice operator [] to a file, with the name of the vari-
able, or with the getVariable function. Note that obtaining a file variable
does not actually read the data array:

>>> f = cdms.open(’sample.nc’,’r+’)
>>> u = f.getVariable(’u’) # or u=f[’u’]
Climate Data Management System 13

Introduction

14
>>> u.shape
(3, 16, 32)

File variables are also useful for fine-grained I/O. They behave like tran-
sient variables, but operations on them also affect the associated file. Spe-
cifically:

• slicing a file variable reads data,

• setting a slice writes data,

• referencing an attribute reads the attribute,

• setting an attribute writes the attribute,

• and calling a file variable like a function reads data associated with the variable:

>>> f = cdms.open(’sample.nc’,’r+’) # Open read/write
>>> uvar = f[’u’] # Note square brackets
>>> uvar.shape
(3, 16, 32)
>>> u0 = uvar[0] # Reads data from sample.nc
>>> u0.shape
(16, 32)
>>> uvar[1]=u0 # Writes data to sample.nc
>>> uvar.units # Reads the attribute
’m/s’
>>> uvar.units=’meters/second’ # Writes the attribute
>>> u24 = uvar(time=24.0) # Reads data
>>> f.close() # Save changes to sample.nc (I/O may be buffered)

In an interactive application, the type of variable can be determined simply
by printing the variable:

>>> rlsf # Transient variable
rls
array(
array (4,48,96) , type = f, has 18432 elements)

>>> rlsg # Dataset variable
<Variable: rls, dataset: mri_perturb, shape: (4, 46, 72)>
>>> prc # File variable
<Variable: prc, file: testnc.nc, shape: (16, 32, 64)>

Note that the data values themselves are not printed. For transient variables,
the data is printed only if the size of the array is less than the print limit.
This value can be set with the function MV.set_print_limit to force the data
to be printed:
Climate Data Management System

Dataset Variables
>>> smallvar.size() # Number of elements
20
>>> MV.get_print_limit() # Current limit
300
>>> smallvar
small variable
array(
[[0., 1., 2., 3.,]
[4., 5., 6., 7.,]
[8., 9., 10., 11.,]
[12., 13., 14., 15.,]
[16., 17., 18., 19.,]])

>>> largevar.size()
400
>>> largevar
large variable
array(
array (20,20) , type = d, has 400 elements)

>>> MV.set_print_limit(500) # Reset the print limit
>>> largevar
large variable
array(
[[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,

10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,]
...])

The datatype of the variable is determined with the typecode function:

>>> x.typecode()
’d’

1.8 Dataset Variables

The third type of variable, a dataset variable, is associated with a dataset, a
collection of files that is treated as a single file. A dataset is created with the
cdscan utility. This generates an ASCII metafile that describes how the files
are organized, and what metadata is contained in the files. In a climate sim-
ulation application, a dataset usually represents the data generated by one
run of a general circulation or coupled ocean-atmosphere model.
Climate Data Management System 15

Introduction

16
For example, suppose data for variables u and v are stored in six files:
u_2000.nc, u_2001.nc, u_2002.nc, v_2000.nc, v_2001.nc, and v_2002.nc. A
metafile can be generated with the command:

% cdscan -x cdsample.xml [uv]*.nc

The metafile cdsample.xml is then used like an ordinary data file:

>>> f = cdms.open(’cdsample.xml’)
>>> u = f(’u’)
>>> u.shape
(3, 16, 32)

1.9 Grids and Regridding

Latitude-longitude grids are used for regridding variables. A grid encapsu-
lates:

• latitude, longitude coordinates

• grid cell boundaries

• area weights

• data ordering

For example, to regrid variable u to a 96x192 Gaussian grid:

>>> u = f(’u’)
>>> u.shape
(3, 16, 32)
>>> t63_grid = cdms.createGaussianGrid(96)
>>> u63 = u.regrid(t63_grid)
>>> u63.shape
(3, 96, 192)

To regrid a variable uold to the same grid as variable vnew:

>>> uold.shape
(3, 16, 32)
>>> vnew.shape
(3, 96, 192)
>>> t63_grid = vnew.getGrid() # Obtain the grid for vnew
>>> u63 = u.regrid(t63_grid)
>>> u63.shape
Climate Data Management System

Time types
(3, 96, 192)

Regridding is discussed in Chapter 4.

1.10 Time types

CDMS provides extensive support for time values in the cdtime mod-
ule. cdtime also defines a set of calendars, specifying the number of days in
a given month.

Two time types are available: relative time and component time. Relative
time is time relative to a fixed base time. It consists of:

• a units string, of the form “units since basetime”, and

• a floating-point value

For example, the time “28.0 days since 1996-1-1” has value=28.0, and
units=”days since 1996-1-1”. To create a relative time type:

>>> import cdtime
>>> rt = cdtime.reltime(28.0, "days since 1996-1-1")
>>> rt
28.00 days since 1996-1-1
>>> rt.value
28.0
>>> rt.units
’days since 1996-1-1’

A component time consists of the integer fields year, month, day, hour,

minute, and the floating-point field second. For example:

>>> ct = cdtime.comptime(1996,2,28,12,10,30)
>>> ct
1996-2-28 12:10:30.0
>>> ct.year
1996
>>> ct.month
2

The conversion functions tocomp and torel convert between the two repre-
sentations. For instance, suppose that the time axis of a variable is repre-
Climate Data Management System 17

Introduction

18
sented in units “days since 1979”. To find the coordinate value
corresponding to January 1, 1990:

>>> ct = cdtime.comptime(1990,1)
>>> rt = ct.torel("days since 1979")
>>> rt.value
4018.0

Time values can be used to specify intervals of time to read. The syntax
time=(c1,c2) specifies that data should be read for times t such that
c1<=t<=c2:

>>> c1 = cdtime.comptime(1990,1)
>>> c2 = cdtime.comptime(1991,1)
>>> ua = f[’ua’]
>>> ua.shape
(480, 17, 73, 144)
>>> x = ua.subRegion(time=(c1,c2))
>>> x.shape
(12, 17, 73, 144)

or string representations can be used:

>>> x = ua.subRegion(time=(’1990-1’,’1991-1’))

Time types are described in Chapter 3.

1.11 Plotting data

Data read via the CDMS Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the VCS reference manual. The vcs module provides access
to the functionality of the VCS visualization program.

To generate a plot:

• Initialize a canvas with the vcs init routine.

• Plot the data using the canvas plot routine.

For example:

>>> import cdms, vcs
>>> f = cdms.open(’sample.nc’)
Climate Data Management System

Databases
>>> f[’time’][:] # Print the time coordinates
[0., 6., 12., 18., 24., 30., 36., 42., 48., 54., 60., 66., 72.,

78., 84., 90.,]
>>> precip = f(’prc’, time=24.0) # Read precip data
>>> precip.shape
(1, 32, 64)
>>> w = vcs.init() # Initialize a canvas
’Template’ is currently set to P_default.
Graphics method ’Boxfill’ is currently set to Gfb_default.
>>> w.plot(precip) # Generate a plot
(generates a boxfill plot)

By default a boxfill plot of the lat-lon slice is produced. Since variable pre-

cip includes information on time, latitude, and longitude, the continental
outlines and time information are also plotted.

The plot routine has a number of options for producing different types of
plots, such as isofill and x-y plots. See Chapter 5 for details.

1.12 Databases

Datasets can be aggregated together into hierarchical collections,
called databases. In typical usage, a program:

• connects to a database

• searches for data

• opens a dataset

• accesses data

Databases add the ability to search for data and metadata in a distributed
computing environment. At present CDMS supports one particular type of
database, based on the Lightweight Directory Access Protocol (LDAP).

Here is an example of accessing data via a database:

>>> db = cdms.connect() # Connect to the default database.
>>> f = db.open(’ncep_reanalysis_mo’) # Open a dataset.
>>> f.variables.keys() # List the variables in the dataset.
[’ua’, ’evs’, ’cvvta’, ’tauv’, ’wap’, ’cvwhusa’, ’rss’, ’rls’, ...
’prc’, ’ts’, ’va’]
Climate Data Management System 19

Introduction

20
Databases are discussed further in Section 2.7.
Climate Data Management System

CHAPTER 2 CDMS Python
Application
Programming Interface
2.1 Overview

This chapter describes the CDMS Python application programming
interface (API). Python is a popular public-domain, object-oriented lan-
guage. Its features include support for object-oriented development, a rich
set of programming constructs, and an extensible architecture. CDMS itself
is implemented in a mixture of C and Python. In this chapter the assumption
is made that the reader is familiar with the basic features of the Python lan-
guage.

Python supports the notion of a module, which groups together associated
classes and methods. The import command makes the module accessible to
an application. This chapter documents the cdms module.

The chapter sections correspond to the CDMS classes. Each section
contains tables describing the class internal (non-persistent) attributes, con-
structors (functions for creating an object), and class methods (functions). A
method can return an instance of a CDMS class, or one of the Python types:
Climate Data Management System 21

CDMS Python Application Programming Interface

22
Table 2.1 Python types used in CDMS

Type Description

Array Numeric or masked multidimensional data array. All ele-
ments of the array are of the same type. Defined in the
Numeric and MA modules.

Comptime Absolute time value, a time with representation (year,
month, day, hour, minute, second). Defined in the
cdtime module. cf. reltime

Dictionary An unordered collection of objects, indexed by key. All
dictionaries in CDMS are indexed by strings, e.g.:

axes[’time’]

Float Floating-point value.

Integer Integer value.

List An ordered sequence of objects, which need not be of
the same type. New members can be inserted or
appended. Lists are denoted with square brackets, e.g.,

[1, 2.0, ’x’, ’y’]

None No value returned.

Reltime Relative time value, a time with representation (value,
“units since basetime”). Defined in the cdtime module.
cf. comptime

Tuple An ordered sequence of objects, which need not be of
the same type. Unlike lists, tuples elements cannot be
inserted or appended. Tuples are denoted with parenthe-
ses, e.g.,

(1, 2.0, ’x’, ’y’)
Climate Data Management System

A first example
2.2 A first example

The following Python script reads January and July monthly tempera-
ture data from an input dataset, averages over time, and writes the results to
an output file. The input temperature data is ordered (time, latitude, longi-
tude).

1 #!/usr/bin/env python
2 import cdms
3 from cdms import MV
4 jones = cdms.open(’/pcmdi/cdms/obs/jones_mo.nc’)
5 tasvar = jones[’tas’]
6 jans = tasvar[0::12]
7 julys = tasvar[6::12]
8 janavg = MV.average(jans)
9 janavg.id = "tas_jan"

10 janavg.long_name = "mean January surface temperature"
11 julyavg = MV.average(julys)
12 julyavg.id = "tas_jul"
13 julyavg.long_name = "mean July surface temperature"
14 out = cdms.open(’janjuly.nc’,’w’)
15 out.write(janavg)
16 out.write(julyavg)
17 out.comment = "Average January/July from Jones dataset"
18 jones.close()
19 out.close()

Line Notes

2,3 Makes the CDMS and MV modules available. MV defines arithmetic
functions.

4 Opens a netCDF file read-only. The result jones is a dataset object.

5 Gets the surface air temperature variable. ’tas’ is the name of the
variable in the input dataset. This does not actually read the data.
Climate Data Management System 23

CDMS Python Application Programming Interface

24
6 Read all January monthly mean data into a variable jans. Variables
can be sliced like arrays. The slice operator [0::12] means ‘take
every 12th slice from dimension 0, starting at index 0 and ending at
the last index.’ If the stride 12 were omitted, it would default to 1.

Note that the variable is actually 3-dimensional. Since no slice is
specified for the second or third dimensions, all values of those
dimensions are retrieved. The slice operation could also have been
written [0::12, : , :].

Also note that the same script works for multi-file datasets. CDMS
opens the needed data files, extracts the appropriate slices, and con-
catenates them into the result array.

7 Reads all July data into a masked array julys.

8 Calculate the average January value for each grid zone. Any missing
data is handled automatically.

9,10 Set the variable id and long_name attributes. The id is used as the
name of the variable when plotted or written to a file.

14 Create a new netCDF output file named ’janjuly.nc’ to hold the
results.

15 Write the January average values to the output file. The variable will
have id “tas_jan” in the file.

write is a utility function which creates the variable in the file, then
writes data to the variable. A more general method of data output is
first to create a variable, then set a slice of the variable.

Note that janavg and julavg have the same latitude and longitude
information as tasvar. It is carried along with the computations.

17 Set the global attribute ’comment’.

18 Close the output file.

Line Notes
Climate Data Management System

cdms module
2.3 cdms module

The cdms module is the Python interface to CDMS. The objects and
methods in this chapter are made accessible with the command:

import cdms

The functions described in this section are not associated with a class.
Rather, they are called as module functions, e.g.,

file = cdms.open(’sample.nc’)

Table 2.2 cdms module functions

Type Definition

Variable asVariable(s)

Transform s into a transient variable.

s is a masked array, Numeric array, or Variable. If s is already a
transient variable, s is returned.

See also: isVariable.

Axis createAxis(data, bounds=None)

Create an Axis, which is not associated with a file or dataset.
This is useful for creating a grid which is not contained in a
file or dataset.

data is a one-dimensional, monotonic Numeric array.

bounds is an array of shape (len(data),2), such that for all i,
data[i] is in the range [bounds[i,0],bounds[i,1]]. If bounds is
not specified, the default boundaries are generated at the mid-
points between the consecutive data values, provided that the
autobounds mode is ‘on’ (the default). See setAutoBounds.

Also see: CdmsFile.createAxis
Climate Data Management System 25

CDMS Python Application Programming Interface

26
Axis createEqualAreaAxis(nlat)

Create an equal-area latitude axis. The latitude values range
from north to south, and for all axis values x[i], sin(x[i])-
sin(x[i+1]) is constant.

nlat is the axis length.

The axis is not associated with a file or dataset.

Axis createGaussianAxis(nlat)

Create a Gaussian latitude axis. Axis values range from north
to south.

nlat is the axis length.

The axis is not associated with a file or dataset.

RectGrid createGaussianGrid(nlats, xorigin=0.0, order=”yx”)

Create a Gaussian grid, with shape (nlats, 2*nlats).

nlats is the number of latitudes.

xorigin is the origin of the longitude axis.

order is either “yx” (lat-lon, default) or “xy” (lon-lat)

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module
RectGrid createGenericGrid(latArray, lonArray, lat-
Bounds=None, lonBounds=None, order="yx",
mask=None)

Create a generic grid, that is, a grid which is not typed as
Gaussian, uniform, or equal-area. The grid is not associated
with a file or dataset.

latArray is a NumPy array of latitude values.

lonArray is a NumPy array of longitude values

latBounds is a NumPy array having shape (len(latArray),2), of
latitude boundaries.

lonBounds is a NumPy array having shape (len(lonArray),2),
of longitude boundaries.

order is a string specifying the order of the axes, either “yx”
for (latitude, longitude), or “xy” for the reverse.

mask (optional) is an integer-valued NumPy mask array, hav-
ing the same shape and ordering as the grid.

RectGrid createGlobalMeanGrid(grid)

Generate a grid for calculating the global mean via a regrid-
ding operation. The return grid is a single zone covering the
range of the input grid.

grid is a RectGrid.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 27

CDMS Python Application Programming Interface

28
RectGrid createRectGrid(lat, lon, order, type="generic",
mask=None)

Create a rectilinear grid, not associated with a file or dataset.
This might be used as the target grid for a regridding opera-
tion.

lat is a latitude axis, created by cdms.createAxis.

lon is a longitude axis, created by cdms.createAxis.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

RectGrid createUniformGrid(startLat, nlat, deltaLat, start-
Lon, nlon, deltaLon, order="yx", mask=None)

Create a uniform rectilinear grid. The grid is not associated
with a file or dataset. The grid boundaries are at the midpoints
of the axis values.

startLat is the starting latitude value.

nlat is the number of latitudes. If nlat is 1, the grid latitude
boundaries will be startLat +/- deltaLat/2.

deltaLat is the increment between latitudes.

startLon is the starting longitude value.

nlon is the number of longitudes. If nlon is 1, the grid longi-
tude boundaries will be startLon +/- deltaLon/2.

deltaLon is the increment between longitudes.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module
Axis createUniformLatitudeAxis(startLat, nlat, deltaLat)

Create a uniform latitude axis. The axis boundaries are at the
midpoints of the axis values. The axis is designated as a circu-
lar latitude axis.

startLat is the starting latitude value.

nlat is the number of latitudes.

deltaLat is the increment between latitudes.

RectGrid createZonalGrid(grid)

Create a zonal grid. The output grid has the same latitude as
the input grid, and a single longitude. This may be used to cal-
culate zonal averages via a regridding operation.

grid is a RectGrid.

Axis createUniformLongitudeAxis(startLon, nlon, delta-
Lon)

Create a uniform longitude axis. The axis boundaries are at the
midpoints of the axis values. The axis is designated as a circu-
lar longitude axis.

startLon is the starting longitude value.

nlon is the number of longitudes.

deltaLon is the increment between longitudes.

Variable createVariable(array, typecode=None, copy=0,
savespace=0, mask=None, fill_value=None,
grid=None, axes=None, attributes=None,
id=None)

This function is documented in Table 2.31 on page 82.

Integer getAutoBounds()

Get the current autobounds mode. Returns 1 if the autobounds
mode is on, 0 otherwise. See setAutoBounds.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 29

CDMS Python Application Programming Interface

30
Integer isVariable(s)

Return 1 if s is a variable, 0 otherwise. See also: asVariable.

Dataset
or
CdmsFile

open(url,mode='r')

Open or create a Dataset or CdmsFile.

url is a Uniform Resource Locator, referring to a cdunif or
XML file. If the URL has the extension '.xml' or '.cdml', a
Dataset is returned, otherwise a CdmsFile is returned. If the
URL protocol is 'http', the file must be a '.xml' or '.cdml' file,
and the mode must be 'r'. If the protocal is 'file' or is omitted, a
local file or dataset is opened.

mode is the open mode. See Table 2.22 on page 63.

Example: Open an existing dataset:

f = cdms.open(“sampleset.xml”)

Example: Create a netCDF file:

f = cdms.open(“newfile.nc”,’w’)

List order2index (axes, orderstring)

Find the index permutation of axes to match order. Return a
list of indices

axes is a list of axis objects.

orderstring is defined as in orderparse.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module
List orderparse(orderstring)

Parse an order string. Returns a list of axes specifiers.

orderstring consists of:

• Letters t, x, y, z meaning time, longitude, latitude, level

• Numbers 0-9 representing position in axes

• Dash (-) meaning insert the next available axis here.

• The ellipsis ... meaning fill these positions with any
remaining axes.

• (name) meaning an axis whose id is name

None setAutoBounds(mode)

Set autobounds mode.

If mode is ’on’ or 1 (the default), the getBounds method will
automatically generate boundary information for an axis or
grid, if the boundaries are not explicitly defined.

If mode is ’off’ or 0, and no boundary data is explicitly
defined, the bounds will NOT be generated; the getBounds
method will return None for the boundaries.

None setClassifyGrids(mode)

Set the grid classification mode. This affects how grid type is
determined, for the purpose of generating grid boundaries.

If mode is ’on’ (the default), grid type is determined by a grid
classification method, regardless of the value of grid.get-
Type().

If mode is ’off’, the value of grid.getType() determines the
grid type

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 31

CDMS Python Application Programming Interface

32
2.4 CdmsObj

A CdmsObj is the base class for all CDMS database objects. At the
application level, CdmsObj objects are never created and used directly.
Rather the subclasses of CdmsObj (Dataset, Variable, Axis, etc.) are the
basis of user application programming.

All objects derived from CdmsObj have a special attribute .attributes. This
is a Python dictionary, which contains all the external (persistent) attributes
associated with the object. This is in contrast to the internal, non-persistent
attributes of an object, which are built-in and predefined. When a CDMS
object is written to a file, the external attributes are written, but not the
internal attributes.

Example: get a list of all external attributes of obj.

extatts = obj.attributes.keys()

Table 2.3 Class Tags

Tag Class

'axis' Axis

’database’ Database

'dataset' Dataset, CdmsFile

'grid' RectGrid

'variable' Variable

'xlink' Xlink

Table 2.4 Attributes common to all CDMS objects

Type Name Definition

Dictionary attributes External attribute dictionary for this object.
Climate Data Management System

Axis
All attributes may be accessed and set using the Python dot notation (‘.’)

2.5 Axis

An Axis is a one-dimensional coordinate object.

An Axis is contained in a Dataset. Setting a slice of an Axis writes data to
the Dataset, referencing an Axis slice reads data from the Dataset. Axis
objects are also used to define the domain of a Variable.

An axis in a CdmsFile may be designated the ‘unlimited’ axis, meaning that
it can be extended in length after the initial definition. There can be at most
one unlimited axis associated with a CdmsFile.

Table 2.5 Getting and setting attributes

Type Definition

Various value = obj.attname

Get an internal or external attribute value. If the attribute
is external, it is read from the database. If the attribute is not
already in the database, it is created as an external attribute.
Internal attributes cannot be created, only referenced.

obj.attname = value

Set an internal or external attribute value. If the attribute
is external, it is written to the database.

Table 2.6 Axis Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.
Climate Data Management System 33

CDMS Python Application Programming Interface

34
2.5.1 partition attribute

For an axis in a dataset, the .partition attribute describes how an axis
is split across files. It is a list of the start and end indices of each axis parti-
tion.

FIGURE 1. Partitioned axis

For example, Figure 1 shows a time axis, representing the 36 months, Janu-
ary 1980 through December 1982, with December 1981 missing. The first
partition interval is (0,12), the second is (12,23), and the third is (24,36),
where the interval (i,j) represents all indices k such that i <= k < j. The .par-
tition attribute for this axis would be the list:

[0, 12, 12, 23, 24, 36]

Note that the end index of the second interval is strictly less than the start
index of the following interval. This indicates that data for that period is
missing.

String id Axis identifer.

Dataset parent The dataset which contains the variable.

Tuple shape The length of each axis.

Table 2.6 Axis Internal Attributes

Type Name Definition

0 1 2 ... 12 13 ... 24 25 ... 36

Ja
n 19

80

Feb
19

80

M
ar

19
80

Ja
n 19

81

Ja
n 19

82

Feb
19

81

Feb
19

82

Ja
n ‘8

3

Index value

Coordinate value

Nov
198

1

23
Climate Data Management System

Axis
Table 2.7 Axis Constructors

cdms.createAxis(data, bounds=None)

Create an axis which is not associated with a dataset or file. See Table 2.2 on
page 25.

Dataset.createAxis(name,ar)

Create an Axis in a Dataset. (This function is not yet implemented.)

CdmsFile.createAxis(name,ar,unlimited=0)

Create an Axis in a CdmsFile.

name is the string name of the Axis.

ar is a 1-D data array which defines the Axis values. It may have the value
None if an unlimited axis is being defined.

At most one Axis in a CdmsFile may be designated as being ’unlimited’,
meaning that it may be extended in length. To define an axis as unlimited,
either:

• set ar to None, and leave unlimited undefined, or

• set ar to the initial 1-D array, and set unlimited to cdms.Unlimited

cdms.createEqualAreaAxis(nlat)

See Table 2.2 on page 25.

cdms.createGaussianAxis(nlat)

See Table 2.2 on page 18.

cdms.createUniformLatitudeAxis(startlat, nlat, deltalat)

See Table 2.2 on page 18.

cdms.createUniformLongitudeAxis(startlon, nlon, deltalon)

See Table 2.2 on page 18.
Climate Data Management System 35

CDMS Python Application Programming Interface

36
Table 2.8 Axis Methods

Type Method Definition

Array array = axis[i:j]

Read a slice of data from the external dataset. Data is
returned in the physical ordering defined in the dataset.
See Table 2.9 on page 43 for a description of slice opera-
tors.

None axis[i:j] = array

Write a slice of data to the external dataset. (axes in
CdmsFiles only)

List of com-
ponent
times

asComponentTime(calendar=None)

Array version of cdtime tocomp. Returns a list of compo-
nent times.

List of rela-
tive times

asRelativeTime()

Array version of cdtime torel. Returns a list of relative
times.

None assignValue(array)

Set the entire value of the axis.

array is a one-dimensional, Numeric array.

Axis clone(copyData=1)

Return a copy of the axis, as a transient axis. If copyData is 1
(the default) the data itself is copied.
Climate Data Management System

Axis
None designateCircular(modulo, persistent=0)

Designate the axis to be circular.

modulo is the modulus value. Any given axis value x is treated
as equivalent to x+modulus

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateLatitude(persistent=0):

Designate the axis to be a latitude axis.

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateLevel(persistent=0)

Designate the axis to be a vertical level axis.

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateLongitude(persistent=0, modulo=360.0)

Designate the axis to be a longitude axis.

modulo is the modulus value. Any given axis value x is treated
as equivalent to x+modulus

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateTime(persistent=0, calendar =
cdtime.MixedCalendar)

Designate the axis to be a time axis.

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

calendar is defined as in getCalendar().

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 37

CDMS Python Application Programming Interface

38
Array getBounds()

Get the associated boundary array. The boundary array has
shape (n,2), where n is the length of the axis.

If a boundary array is not explicitly defined and autoBounds
mode is on, a default array is generated by calling genGener-
icBounds. Otherwise if autoBounds mode is off, the return
value is None. See setAutoBounds.

Integer getCalendar()

Returns the calendar associated with the (time) axis. Possible
return values, as defined in the cdtime module, are:

• cdtime.GregorianCalendar: the standard Gregorian calen-
dar

• cdtime.MixedCalendar: mixed Julian/Gregorian calendar

• cdtime.JulianCalendar: years divisible by 4 are leap years

• cdtime.NoLeapCalendar: a year is 365 days

• cdtime.Calendar360: a year is 360 days

• None: no calendar can be identified

Note: If the axis is not a time axis, the global, file-related cal-
endar is returned.

Array getValue()

Get the entire axis vector.

Integer isCircular()

Returns true if the axis has circular topology.

An axis is defined as circular if:

• axis.topology==’circular’, or

• axis.topology is undefined, and the axis is a longitude
The default cycle for circular axes is 360.0

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System

Axis
Integer isLatitude()

Returns true iff the axis is a latitude axis.

Integer isLevel()

Returns true iff the axis is a level axis.

Integer isLinear()

Returns true iff the axis has a linear representation.

Integer isLongitude()

Returns true iff the axis is a longitude axis.

Integer isTime()

Returns true iff the axis is a time axis.

Integer len(axis)

The length of the axis.

Tuple mapInterval(interval)

Same as mapIntervalExt, but returns only the tuple (i,j), and
wraparound is restricted to one cycle.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 39

CDMS Python Application Programming Interface

40
(i,j,k) mapIntervalExt(interval)

Map a coordinate interval to an index interval.

interval is a tuple having one of the forms:

(x,y)
(x,y,indicator)
(x,y,indicator,cycle)
None or ’:’

where x and y are coordinates indicating the interval
[x,y), and:

indicator is a two or three-character string, where the
first character is 'c' if the interval is closed on the left, 'o'
if open, and the second character has the same meaning
for the right-hand point. If present, the third character
specifies how the interval should be intersected with the
axis:

• ’n’ - select node values which are contained in the interval

• ’b’ - select axis elements for which the corresponding cell
boundary intersects the interval

• ’e’ - same as ’n’, but include an extra node on either side

• ’s’ - select axis elements for which the cell boundary is a
subset of the interval

The default indicator is ’ccn’, that is, the interval is
closed, and nodes in the interval are selected.

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if axis.isCircular() is
true, the axis is treated as circular with a default modulus
of 360.0.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System
An interval of None or ’:’ returns the full index interval
of the axis.

(continued)

Axis
None (mapInterval, continued)

The method returns the corresponding index interval as a
3-tuple (i,j,k), where k is the integer stride, and [i,j) is
the half-open index interval i<=k<j (i>=k>j if k<0), or
None if the intersection is empty.

For an axis which is circular (axis.topology == 'circu-
lar'), [i,j) is interpreted as follows (where N = len(axis)):

• if 0<=i<N and 0<=j <= N, the interval does not wrap
around the axis endpoint

• otherwise the interval wraps around the axis endpoint.

See also: mapInterval, Variable.subRegion()

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 41

CDMS Python Application Programming Interface

42
None setBounds(bounds, validate=0, boundsid=None, per-
sistent=0, index=None)

Set the axis bounds.

bounds is a Numeric array, masked array (MA), or masked
variable (MV) with shape (N,2) where N is the axis length.

If validate is 1, an exception is raised if either of the tests fail:

• bounds must have shape (N,2)

• for all indices i, axis[i] must be in the interval [bounds[i,0],
bounds[i,1]]

The remaining optional keywords apply only to FileAxis
objects (axes in external files):

boundsid is the string name of the bounds array as written to
the file. By default, the id is ‘bounds_<axisid>’ where
‘<axisid>’ is the axis identifier.

If persistent=1, the bounds are written to the file.

For index set to an integer n, the bounds array is written start-
ing at index n. This is useful when the axis is the ‘unlimited’
dimension and is being written iteratively.

Notes:

• When using the write call, it is not necessary to call set-
Bounds. This is done automatically.

None setCalendar(calendar, persistent=1)

Set the calendar for this (time) axis.

calendar is defined as in getCalendar().

If persistent is true, the external file or dataset (if any) is mod-
ified. This is the default.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System

Axis
Example: A longitude axis has value [0.0, 2.0, ..., 358.0], of length 180.
Map the coordinate interval -5.0 <= x < 5.0 to index interval(s), with wrap-
around. The result index interval -2<=n<3 wraps around, since -2<0, and
has a stride of 1. This is equivalent to the two contiguous index intervals -
2<=n<0 and 0<=n<3

> axis.isCircular()
1
> axis.mapIntervalExt((-5.0,5.0,’co’))
(-2,3,1)
>

Transien-
tAxis

subAxis(i,j,k=1)

Create an axis associated with the integer range [i:j:k]. The
stride k can be positive or negative. Wraparound is supported
for longitude dimensions or those with a modulus attribute.

String typecode()

The Numeric datatype identifier.

Table 2.9 Axis Slice Operators

Slice Definition

[i] The ith element, starting with index 0

[i:j] The ith element through, but not including, element j

[i:] The ith element through and including the end

[:j] The beginning element through, but not including, element
j

[:] The entire array

[i:j:k] Every kth element, starting at i, through but not including j

[-i] The ith element from the end. -1 is the last element.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 43

CDMS Python Application Programming Interface

44
2.6 CdmsFile

A CdmsFile is a physical file, accessible via the cdunif interface.
netCDF files are accessible in read-write mode. All other formats (DRS,
HDF, GrADS/GRIB, POP, QL) are accessible read-only.

As of CDMS V3, the legacy cuDataset interface is also supported by Cdms-
Files. See “cu Module” on page 161.

Table 2.10 CdmsFile Internal Attributes

Type Name Definition

Dictionary attributes Global, external file attributes

Dictionary axes Axis objects contained in the file.

Dictionary grids Grids contained in the file.

String id File pathname.

Dictionary variables Variables contained in the file.

Table 2.11 CdmsFile Constructors

fileobj = cdms.open(path, mode)

Open the file specified by path returning a CdmsFile object.

path is the file pathname, a string.

mode is the open mode indicator, as listed in Table 2.22 on page 63.

fileobj = cdms.createDataset(path)

Create the file specified by path, a string.
Climate Data Management System

CdmsFile
Table 2.12 CdmsFile Methods

Type Definition

Transient-
Variable

fileobj(varname, selector)

Calling a CdmsFile object as a function reads the region of
data specified by the selector. The result is a transient variable,
unless raw=1 is specified. See “Selectors” on page 95.

For example, the following reads data for variable ’prc’, year
1980:

f = cdms.open(’test.nc’)
x = f(’prc’, time=(’1980-1’,’1981-1’))

Variable,
Axis, or
Grid

fileobj[’id’]

Get the persistent variable, axis or grid object having the string
identifier. This does not read the data for a variable.

For example:

f = cdms.open(’sample.nc’)
v = f[’prc’]

gets the persistent variable v, equivalent to v=f.vari-

ables[’prc’].

t = f[’time’]

gets the axis named ’time’, equivalent to t=f.axes[’time’].

None close()

Close the file.
Climate Data Management System 45

CDMS Python Application Programming Interface

46
Axis copyAxis(axis, newname=None)

Copy axis values and attributes to a new axis in the file. The
returned object is persistent: it can be used to write axis data to
or read axis data from the file. If an axis already exists in the
file, having the same name and coordinate values, it is
returned. It is an error if an axis of the same name exists, but
with different coordinate values.

axis is the axis object to be copied.

newname, if specified, is the string identifier of the new axis
object. If not specified, the identifier of the input axis is used.

Grid copyGrid(grid, newname=None)

Copy grid values and attributes to a new grid in the file. The
returned grid is persistent. If a grid already exists in the file,
having the same name and axes, it is returned. An error is
raised if a grid of the same name exists, having different axes.

grid is the grid object to be copied.

newname, if specified is the string identifier of the new grid
object. If unspecified, the identifier of the input grid is used.

Axis createAxis(id, ar, unlimited=0)

Create a new Axis. This is a persistent object which can be
used to read or write axis data to the file.

id is an alphanumeric string identifier, containing no blanks.

ar is the one-dimensional axis array.

Set unlimited to cdms.Unlimited to indicate that the axis is
extensible.

Table 2.12 CdmsFile Methods

Type Definition
Climate Data Management System

CdmsFile
RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a RectGrid in the file. This is not a persistent object: the
order, type, and mask are not written to the file. However, the
grid may be used for regridding operations.

lat is a latitude axis in the file.

lon is a longitude axis in the file.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Variable createVariable(String id, String datatype,List axes,
fill_value=None)

Create a new Variable. This is a persistent object which can be
used to read or write variable data to the file.

id is a String name which is unique with respect to all other
objects in the file.

datatype is an MA typecode, e.g., MA.Float, MA.Int.

axes is a list of Axis and/or Grid objects.

fill_value is the missing value (optional).

Table 2.12 CdmsFile Methods

Type Definition
Climate Data Management System 47

CDMS Python Application Programming Interface

48
Variable createVariableCopy(var, newname=None)

Create a new Variable, with the same name, axes, and
attributes as the input variable. An error is raised if a variable
of the same name exists in the file.

var is the Variable to be copied.

newname, if specified is the name of the new variable. If
unspecified, the returned variable has the same name as var.

Note: Unlike copyAxis, the actual data is not copied to the
new variable.

None sync()

Writes any pending changes to the file.

Table 2.12 CdmsFile Methods

Type Definition
Climate Data Management System

CdmsFile
Variable write(var, attributes=None, axes=None, ext-
bounds=None, id=None, extend=None,
fill_value=None, index=None, typecode=None)

Write a variable or array to the file. The return value is the
associated file variable.

If the variable does not exist in the file, it is first defined and
all attributes written, then the data is written. By default, the
time dimension of the variable is defined as the ’unlimited’
dimension of the file. If the data is already defined, then data is
extended or overwritten depending on the value of keywords
extend and index, and the unlimited dimension values associ-
ated with var.

var is a Variable, masked array, or Numeric array.

attributes is the attribute dictionary for the variable. The
default is var.attributes.

axes is the list of file axes comprising the domain of the vari-
able. The default is to copy var.getAxisList().

extbounds is the unlimited dimension bounds. Defaults to
var.getAxis(0).getBounds()

id is the variable name in the file. Default is var.id.

extend=1 causes the first dimension to be ’unlimited’: itera-
tively writeable. The default is None, in which case the first
dimension is extensible if it is time.Set to 0 to turn off this
behaviour.

fill_value is the missing value flag.

index is the extended dimension index to write to. The default
index is determined by lookup relative to the existing extended
dimension.

Note: data can also be written by setting a slice of a file vari-
able, and attributes can be written by setting an attribute of a
file variable.

Table 2.12 CdmsFile Methods

Type Definition
Climate Data Management System 49

CDMS Python Application Programming Interface

50
2.7 Database

A Database is a collection of datasets and other CDMS objects. It
consists of a hierarchical collection of objects, with the database being at
the root, or top of the hierarchy. A database is used to:

• search for metadata

• access data

• provide authentication and access control for data and metadata

The figure below illustrates several important points:

• Each object in the database has a relative name of the form tag=id. The id of an
object is unique with respect to all objects contained in the parent.

• The name of the object consists of its relative name followed by the relative
name(s) of its antecedent objects, up to and including the database name. In the
figure below, one of the variables has name

“variable=ua, dataset=ncep_reanalysis_mo,database=CDMS”.

Table 2.13 CDMS Datatypes

CDMS
Datatype Definition

CdChar character

CdDouble double-precision floating-point

CdFloat floating-point

CdInt integer

CdLong long integer

CdShort short integer
Climate Data Management System

Database
• Subordinate objects are thought of as being contained in the parent. In this
example, the database ‘CDMS’ contains two datasets, each of which contain
several variables.

2.7.1 Overview

To access a database:

1. Open a connection. The connect method opens a database connection. connect
takes a database URI and returns a database object:
db = cdms.connect(“ldap://dbhost.llnl.gov/

database=CDMS,ou=PCMDI,o=LLNL,c=US”)

2. Search the database, locating one or more datasets, variables, and/or other
objects.

The database searchFilter method searches the database. A single database
connection may be used for an arbitrary number of searches.

For example, to find all observed datasets:

result = db.searchFilter("category=observed",tag=”dataset”)

Searches can be restricted to a subhierarchy of the database. This example
searches just the dataset ‘ncep_reanalysis_mo’:

result = db.searchFilter(relbase=”dataset=ncep_reanalysis”)

dataset=ncep_reanalysis_mo

variable=ua variable=va

dataset=ecmwf_reanalysis_mo

variable=ua variable=va

database=CDMS
Climate Data Management System 51

CDMS Python Application Programming Interface

52
3. Refine the search results if necessary. The result of a search can be narrowed
with the searchPredicate method.

4. Process the results. A search result consists of a sequence of entries. Each entry
has a name, the name of the CDMS object, and an attribute dictionary, consist-
ing of the attributes located by the search:
for entry in result:

print entry.name, entry.attributes

5. Access the data. The CDMS object associated with an entry is obtained from the
getObject method:
obj = entry.getObject()

If the id of a dataset is known, the dataset can be opened directly with the
open method:

dset = db.open(“ncep_reanalysis_mo”)

6. Close the database connection:
db.close()

Table 2.14 Database Internal Attributes

Type Name Summary

Dictionary attributes Database attribute dictionary

LDAP db (LDAP only) LDAP database object

String netloc Hostname, for server-based databases

String path path name

String uri Uniform Resource Identifier.
Climate Data Management System

Database
Table 2.15 Database Constructors

db = cdms.connect(uri=None, user="", password="")

Connect to the database.

uri is the Universal Resource Indentifier of the database. The form of the URI
depends on the implementation of the database. For a Lightweight Directory
Access Protocol (LDAP) database, the form is:

ldap://host[:port]/dbname

For example, if the database is located on host ‘dbhost.llnl.gov’, and is named
’database=CDMS,ou=PCMDI,o=LLNL,c=US’, the URI is:

ldap://dbhost.llnl.gov/database=CDMS,ou=PCMDI,o=LLNL,c=US

If unspecified, the URI defaults to the value of environment variable
CDMSROOT.

user is the user ID. If unspecified, an anonymous connection is made.

password is the user password. A password is not required for an anon-
ymous connection.

Table 2.16 Database Methods

Type Definition

None close()

Close a database connection.

List listDatasets()

Return a list of the dataset IDs in this database. A dataset ID
can be passed to the open command.
Climate Data Management System 53

CDMS Python Application Programming Interface

54
Dataset open(dsetid, mode=’r’)

Open a dataset.

dsetid is the string dataset identifier

mode is the open mode, ’r’ - read-only, ’r+’ - read-write, ’w’ -
create.

openDataset is a synonym for open.

Table 2.16 Database Methods

Type Definition
Climate Data Management System

Database
SearchResult searchFilter(filter=None, tag=None, relbase=None,
scope=Subtree, attnames=None, timeout=None)

Search a CDMS database.

filter is the string search filter. Simple filters have the form
"tag = value". Simple filters can be combined using logical
operators ’&’, ’|’, ’!’ in prefix notation. For example, the filter
’(&(objectclass=variable)(id=cli))’ finds all variables named
“cli”. A formal definition of search filters is provided in the
following section.

tag restricts the search to objects with that tag ("dataset" |
"variable" | "database" | "axis" | "grid").

relbase is the relative name of the base object of the search.
The search is restricted to the base object and all objects below
it in the hierarchy. For example, to search only dataset
‘ncep_reanalysis_mo’, specify:

relbase=”dataset=ncep_reanalysis_mo”.

To search only variable ’ua’ in ncep_reanalysis_mo, use:

relbase=”variable=ua,
dataset=ncep_reanalysis_mo”

If no base is specified, the entire database is searched. See the
scope argument also.

scope is the search scope (Subtree | Onelevel | Base). Subtree
searches the base object and its descendants. Onelevel
searches the base object and its immediate descendants. Base
searches the base object alone. The default is Subtree.

attnames: list of attribute names. Restricts the attributes
returned. If None, all attributes are returned. Attributes ’id’
and ’objectclass’ are always included in the list.

timeout: integer number of seconds before timeout. The
default is no timeout.

Table 2.16 Database Methods

Type Definition
Climate Data Management System 55

CDMS Python Application Programming Interface

56
2.7.2 Searching a database

The searchFilter method is used to search a database. The result is
called a search result, and consists of a sequence of result entries.

In its simplest form, searchFilter takes an argument consisting of a string
filter. The search returns a sequence of entries, corresponding to those
objects having an attribute which matches the filter. Simple filters have the
form (tag = value), where value can contain wildcards. For example:

’(id = ncep*)’
’(project = AMIP2)’

Simple filters can be combined with the logical operators ‘&’, ‘|’, ‘!’. For
example,

’(&(id = bmrc*)(project = AMIP2))’

matches all objects with id starting with ’bmrc’, and a ’project’ attribute
with value ’AMIP2’.

Formally, search filters are strings defined as follows:

filter ::= "(" filtercomp ")"
filtercomp ::= "&" filterlist | # and

"|" filterlist | # or
"!" filterlist | # not
simple

filterlist ::= filter | filter filterlist
simple ::= tag op value
op ::= "=" | # equality

"~=" | # approximate equality
"<=" | # lexicographically less than or equal to
">=" # lexicographically greater than or equal to

tag ::= string attribute name
value ::= string attribute value, may include ’*’ as a wild card

Attribute names are defined in the chapter on “Climate Data Markup Lan-
guage (CDML)” on page 135. In addition, some special attributes are
defined for convenience:

• category is either “experimental” or “observed”

• parentid is the ID of the parent dataset
Climate Data Management System

Database
• project is a project identifier, e.g., “AMIP2”

• objectclass is the list of tags associated with the object.

The set of objects searched is called the search scope. The top object in the
hierarchy is the base object. By default, all objects in the database are
searched, that is, the database is the base object. If the database is very
large, this may result in an unnecessarily slow or inefficient search. To rem-
edy this the search scope can be limited in several ways:

• The base object can be changed.

• The scope can be limited to the base object and one level below, or to just the
base object.

• The search can be restricted to objects of a given class (dataset, variable, etc.)

• The search can be restricted to return only a subset of the object attributes

• The search can be restricted to the result of a previous search.

A search result is accessed sequentially within a for loop:

result = db.searchFilter(’(&(category=obs*)(id=ncep*))’)
for entry in result:

print entry.name

Search results can be narrowed using searchPredicate. In the following
example, the result of one search is itself searched for all variables defined
on a 94x192 grid:

>>> result = db.searchFilter(’parentid=ncep*’,tag="variable")
>>> len(result)
65
>>> result2 = result.searchPredicate(lambda x:

x.getGrid().shape==(94,192))
>>> len(result2)
3
>>> for entry in result2: print entry.name
variable=rluscs,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
variable=rlds,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
variable=rlus,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
>>>
Climate Data Management System 57

CDMS Python Application Programming Interface

58
A search result is a sequence of result entries. Each entry has a string name,
the name of the object in the database hierarchy, and an attribute dictionary.
An entry corresponds to an object found by the search, but differs from the
object, in that only the attributes requested are associated with the entry. In
general, there will be much more information defined for the associated
CDMS object, which is retrieved with the getObject method.

Table 2.17 SearchResult Methods

Type Definition

ResultEntry [i]

Return the i-th search result. Results can also be returned in a
for loop:

for entry in db.searchResult(tag="dataset"):
...

Integer len()

Number of entries in the result.

SearchResult searchPredicate(predicate, tag=None)

Refine a search result, with a predicate search.

predicate is a function which takes a single CDMS object and
returns true (1) if the object satisfies the predicate, 0 if not.

tag restricts the search to objects of the class denoted by the
tag.

Note: In the current implementation, searchPredicate is much
less efficient than searchFilter. For best performance, use
searchFilter to narrow the scope of the search, then use
searchPredicate for more general searches.
Climate Data Management System

Database
2.7.3 Accessing data

To access data via CDMS:

1. Locate the dataset ID. This may involve searching the metadata.

2. Open the dataset, using the open method.

3. Reference the portion of the variable to be read.

In the next example, a portion of variable ’ua’ is read from dataset
’ncep_reanalysis_mo’:

dset = db.open(’ncep_reanalysis_mo’)
ua = dset.variables[’ua’]
data = ua[0,0]

Table 2.18 ResultEntry Attributes

Type Name Summary

String name The name of this entry in the database.

Dictionary attributes The attributes returned from the search.

attributes[key] is a list of all string values asso-
ciated with the key.

Table 2.19 ResultEntry Methods

Type Definition

CdmsObj getObject()

Return the CDMS object associated with this entry.

Note: For many search applications it is unnecessary to access
the associated CDMS object. For best performance this func-
tion should be used only when necessary, for example, to
retrieve data associated with a variable.
Climate Data Management System 59

CDMS Python Application Programming Interface

60
2.7.4 Examples of database searches

In the following examples, db is the database opened with

db = cdms.connect()

This defaults to the database defined in environment variable CDMSROOT.

List all variables in dataset ’ncep_reanalysis_mo’:

for entry in db.searchFilter(filter="parentid=ncep_reanalysis_mo",
tag="variable"):

print entry.name

Find all axes with bounds defined:

for entry in db.searchFilter(filter="bounds=*",tag="axis"):
print entry.name

Locate all GDT datasets:

for entry in
db.searchFilter(filter="Conventions=GDT*",tag="dataset"):

print entry.name

Find all variables with missing time values, in observed datasets:

def missingTime(obj):
time = obj.getTime()
return time.length != time.partition_length

result = db.searchFilter(filter="category=observed")
for entry in result.searchPredicate(missingTime):

print entry.name

Find all CMIP2 datasets having a variable with id "hfss":

for entry in
db.searchFilter(filter="(&(project=CMIP2)(id=hfss))",tag="var
iable"):

print entry.getObject().parent.id
Climate Data Management System

Dataset
Find all observed variables on 73x144 grids:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lambda x:

x.getGrid().shape==(73,144),tag="variable"):
print entry.name

Find all observed variables with more than 1000 timepoints:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lambda x: len(x.getTime())>1000,

tag="variable"):
print entry.name, len(entry.getObject().getTime())

Find the total number of each type of object in the database

print len(db.searchFilter(tag="database")),"database"
print len(db.searchFilter(tag="dataset")),"datasets"
print len(db.searchFilter(tag="variable")),"variables"
print len(db.searchFilter(tag="axis")),"axes"

2.8 Dataset

A Dataset is a virtual file. It consists of a metafile, in CDML/XML repre-
sentation, and one or more data files.

As of CDMS V3, the legacy cuDataset interface is supported by Datasets.
See “cu Module” on page 161.

Table 2.20 Dataset Internal Attributes

Type Name Summary

Dictionary attributes Dataset external attributes.

Dictionary axes Axes contained in the dataset.

String datapath Path of data files, relative to the parent data-
base. If no parent, the datapath is absolute.
Climate Data Management System 61

CDMS Python Application Programming Interface

62
Dictionary grids Grids contained in the dataset.

String mode Open mode.

Database parent Database which contains this dataset. If the
dataset is not part of a database, the value is
None.

String uri Uniform Resource Identifier of this dataset.

Dictionary variables Variables contained in the dataset.

Dictionary xlinks External links contained in the dataset.

Table 2.21 Dataset Constructors

datasetobj = cdms.open(String uri, String mode='r')

Open the dataset specified by the Universal Resource Indicator, a CDML file.
Returns a Dataset object. mode is one of the indicators listed in Table 2.22 on
page 63.

openDataset is a synonym for open.

datasetobj = cdms.createDataset(String path, String directory,
String fileTemplate)

(Note: this function is not yet implemented)

Create a new dataset, returning a Dataset object. path is the filepath of a
CDML file. fileTemplate describes how the dataset is to be partitioned. It is a
pathname, relative to the directory, which contains zero or more template
specifiers (see Table 2.23 on page 63). A template may contain directory
names as well as file names. A template specifier is a string of the form '%X'
or '%eX', where X is one of the characters listed Table 2.23 on page 63. The
form '%eX' may be used to specify the end time or level value. A specifier
may appear more than once in a template.

Table 2.20 Dataset Internal Attributes

Type Name Summary
Climate Data Management System

Dataset
Table 2.22 Open Modes

Mode Definition

'r' read-only

'r+' read-write

'a' read-write. Open the file if it exists, otherwise create a
new file

'w' Create a new file, read-write

Table 2.23 Template Specifiers

Specifier Definition Example

d day number 1 .. 31

f day number, two-digit, zero-
filled

01 .. 31

g month, lower case, three char-
acters

'jan', 'feb', ...

G month, upper case, three
characters

'JAN', 'FEB', ...

H hour 0 .. 23

L vertical level integer

m month number, not zero filled 1 .. 12

M minute 0 .. 59

n month number, two-digit,
zero-filled

01, 02, ..., 12

S second 0 .. 59

v variable ID character

y year, two-digit, zero-filled integer

Y year integer
Climate Data Management System 63

CDMS Python Application Programming Interface

64
For example, the file template

ccsr-a/mo/%v/ccsr-a/%v_ccsr-a_%Y.%n-%eY.%en.nc

contains the specifiers %v (variable name), %Y (year), %eY (end year),
and %en (end month). One of the files in the dataset might have the path
(relative to the parent directory)

ccsr-a/mo/ta/ccsr-a/ta_ccsr-a_1979.01-1979.12.nc

z Zulu time ex: '6Z19990201'

% percent sign '%'

Table 2.24 Dataset Methods

Type Definition

Transient-
Variable

datasetobj(varname, selector)

Calling a Dataset object as a function reads the region of data
defined by the selector. The result is a transient variable,
unless raw=1 is specified. See “Selectors” on page 95.

For example, the following reads data for variable ’prc’, year
1980:

f = cdms.open(’test.xml’)
x = f(’prc’, time=(’1980-1’,’1981-1’))

Table 2.23 Template Specifiers

Specifier Definition Example
Climate Data Management System

Dataset
Variable,
Axis, or
Grid

datasetobj[’id’]

The square bracket operator applied to a dataset gets the per-
sistent variable, axis or grid object having the string identifier.
This does not read the data for a variable. Returns None if not
found.

For example:

f = cdms.open(’sample.xml’)
v = f[’prc’]

gets the persistent variable v, equivalent to v=f.vari-

ables[’prc’].

t = f[’time’]

gets the axis named ‘time’, equivalent to t=f.axes[’time’].

None close()

Close the dataset.

RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a RectGrid in the dataset. This is not a persistent object:
the order, type, and mask are not written to the dataset. How-
ever, the grid may be used for regridding operations.

lat is a latitude axis in the dataset.

lon is a longitude axis in the dataset.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Axis getAxis(id)

Get an axis object from the file or dataset.

id is the string axis identifier.

Table 2.24 Dataset Methods

Type Definition
Climate Data Management System 65

CDMS Python Application Programming Interface

66
2.9 MV module

The fundamental CDMS data object is the variable. A variable is comprised
of:

• a masked data array, as defined in the NumPy MA module.

• a domain: an ordered list of axes and/or grids.

• an attribute dictionary.

The MV module is a work-alike replacement for the MA module, that car-
ries along the domain and attribute information where appropriate. MV pro-

Grid getGrid(id)

Get a grid object from a file or dataset.

id is the string grid identifier.

List getPaths()

Get a sorted list of pathnames of datafiles which comprise the
dataset. This does not include the XML metafile path, which is
stored in the .uri attribute.

Variable getVariable(id)

Get a variable object from a file or dataset.

id is the string variable identifier.

None sync()

Write any pending changes to the dataset.

Table 2.24 Dataset Methods

Type Definition
Climate Data Management System

MV module
vides the same set of functions as MA. However, MV functions generate
transient variables as results. Often this simplifies scripts that perform com-
putation. MA is part of the Python Numeric package, documented at http://
numpy.sourceforge.net.

MV can be imported with the command:

import MV

The command

from MV import *

allows use of MV commands without any prefix.

Table 2.25 on page 68 lists the constructors in MV. All functions return a
transient variable. In most cases the keywords axes, attributes, and id are
available. axes is a list of axis objects which specifies the domain of the
variable. attributes is a dictionary. id is a special attribute string that serves
as the identifier of the variable, and should not contain blanks or non-print-
ing characters. It is used when the variable is plotted or written to a file.
Since the id is just an attribute, it can also be set like any attribute:

var.id = ’temperature’

For completeness MV provides access to all the MA functions. The func-
tions not listed in the following tables are identical to the corresponding MA
function: allclose, allequal, common_fill_value, compress, create_mask,
dot, e, fill_value, filled, get_print_limit, getmask, getmaskarray, iden-
tity, indices, innerproduct, isMA, isMaskedArray, is_mask, isarray,
make_mask, make_mask_none, mask_or, masked, pi, put, putmask,
rank, ravel, set_fill_value, set_print_limit, shape, size. See the documen-
tation at http://numpy.sourceforge.net for a description of these functions.
Climate Data Management System 67

CDMS Python Application Programming Interface

68
Table 2.25 Variable Constructors in module MV

arrayrange(start, stop=None, step=1, typecode=None, axis=None,
attributes=None, id=None)

Just like MA.arange() except it returns a variable whose type can be specfied
by the keyword argument typecode. The axis, attribute dictionary, and string
identifier of the result variable may be specified.

Synonym: arange

masked_array(a, mask=None, fill_value=None, axes=None,
attributes=None, id=None)

Same as MA.masked_array but creates a variable instead. If no axes are speci-
fied, the result has default axes, otherwise axes is a list of axis objects match-
ing a.shape.

masked_object(data, value, copy=1, savespace=0, axes=None,
attributes=None, id=None)

Create variable masked where exactly data equal to value. Create the variable
with the given list of axis objects, attribute dictionary, and string id.

masked_values(data, value, rtol=1e-05, atol=1e-08, copy=1, savespace=0,
axes=None, attributes=None, id=None)

Constructs a variable with the given list of axes and attribute dictionary, whose
mask is set at those places where

abs (data - value) < atol + rtol * abs (data).

This is a careful way of saying that those elements of the data that have value
= value (to within a tolerance) are to be treated as invalid. If data is not of a
floating point type, calls masked_object instead.

ones(shape, typecode=’l’, savespace=0, axes=None, attributes=None,
id=None)

Return an array of all ones of the given length or shape.
Climate Data Management System

MV module
The following table describes the MV non-constructor functions. With the
exception of argsort, all functions return a transient variable.

reshape(a, newshape, axes=None, attributes=None, id=None)

Copy of a with a new shape.

resize(a, new_shape, axes=None, attributes=None, id=None)

Return a new array with the specified shape. The original array’s total size can
be any size.

zeros(shape, typecode=’l’, savespace=0, axes=None, attributes=None,
id=None)

An array of all zeros of the given length or shape.

Table 2.26 MV functions

Definition

argsort(x, axis=-1, fill_value=None)

Return a Numeric array of indices for sorting along a given axis.

asarray(data, typecode=None)

Same as cdms.createVariabledata, typecode, copy=0). This is a short way of
ensuring that something is an instance of a variable of a given type before pro-
ceeding, as in

data = asarray(data)

Also see the variable astype() function.

Table 2.25 Variable Constructors in module MV
Climate Data Management System 69

CDMS Python Application Programming Interface

70
average(a, axis=0, weights=None)

computes the average value of the non-masked elements of x along the se-
lected axis. If weights is given, it must match the size and shape of x, and the
value returned is:

sum(a*weights)/sum(weights)

In computing these sums, elements that correspond to those that are masked in
x or weights are ignored.

choose(condition, t)

has a result shaped like array condition. t must be a tuple of two arrays t1 and
t2. Each element of the result is the corresponding element of t1 where condi-
tion is true, and the corresponding element of t2 where condition is false. The
result is masked where condition is masked or where the selected element is
masked.

concatenate(arrays, axis=0, axisid=None, axisattributes=None)

Concatenate the arrays along the given axis. Give the extended axis the id and
attributes provided - by default, those of the first array.

count(a, axis=None)

Count of the non-masked elements in a, or along a certain axis.

isMaskedVariable(x)

Return true if x is an instance of a variable.

masked_equal(x, value)

x masked where x equals the scalar value For floating point value consider
masked_values(x, value) instead.

masked_greater(x, value)

x masked where x > value

masked_greater_equal(x, value)

x masked where x >= value

Table 2.26 MV functions

Definition
Climate Data Management System

MV module
masked_less(x, value)

x masked where x < value

masked_less_equal(x, value)

x masked where x <= value

masked_not_equal(x, value)

x masked where x != value

masked_outside(x, v1, v2)

x with mask of all values of x that are outside [v1,v2]

masked_where(condition, x, copy=1)

Return x as a variable masked where condition is true. Also masked where x
or condition masked. condition is a masked array having the same shape as x.

maximum(a, b=None)

Compute the maximum valid values of x if y is None; with two arguments,
return the element-wise larger of valid values, and mask the result where either
x or y is masked.

minimum(a, b=None)

Compute the minimum valid values of x if y is None; with two arguments,
return the element-wise smaller of valid values, and mask the result where
either x or y is masked.

outerproduct(a, b)

Return a variable such that result[i, j] = a[i] * b[j]. The result will be masked
where a[i] or b[j] is masked.

power(a, b)

a**b

product(a, axis=0, fill_value=1)

Product of elements along axis using fill_value for missing elements.

Table 2.26 MV functions

Definition
Climate Data Management System 71

CDMS Python Application Programming Interface

72
2.10 RectGrid

A RectGrid is a two-dimensional, horizontal, rectilinear grid. A rectGrid
can be defined in terms of a pair of axes, one longitude and one latitude. A
two-dimensional, logical mask array may optionally be associated with a
rectGrid.

repeat(ar, repeats, axis=0)

Return ar repeated repeats times along axis. repeats is a sequence of length
ar.shape[axis] telling how many times to repeat each element.

set_default_fill_value(value_type, value)

Set the default fill value for value_type to value. value_type is a string:
’real’,’complex’,’character’,’integer’,or ’object’. value should be a
scalar or single-element array.

sort(ar, axis=-1)

Sort array ar elementwise along the specified axis. The corresponding axis in
the result has dummy values.

sum(a, axis=0, fill_value=0)

Sum of elements along a certain axis using fill_value for missing.

take(a, indices, axis=0)

Return a selection of items from a. See the documentation in the Numeric
manual.

transpose(ar, axes=None)

Perform a reordering of the axes of array ar depending on the tuple of indices
axes;thedefault is to reverse the order of the axes.

where(condition, x, y)

x where condition is true, y otherwise.

Table 2.26 MV functions

Definition
Climate Data Management System

RectGrid
Table 2.27 RectGrid Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id The grid identifier.

Dataset or
CdmsFile

parent The dataset or file which contains the grid.

Tuple shape The shape of the grid, a 2-tuple.

Table 2.28 RectGrid Constructors

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

Create a grid not associated with a file or dataset.

See Table 2.2 on page 25.

CdmsFile.createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a grid associated with a file. See Table 2.12 on page 45.

Dataset.createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a grid associated with a dataset. See Table 2.24 on page 64.

cdms.createGaussianGrid(nlats, xorigin=0.0, order=”yx”)

See Table 2.2 on page 25.

cdms.createGenericGrid(latArray, lonArray, latBounds=None,
lonBounds=None, order="yx", mask=None)

See Table 2.2 on page 18.
Climate Data Management System 73

CDMS Python Application Programming Interface

74
cdms.createGlobalMeanGrid(grid)

See Table 2.2 on page 18.

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

See Table 2.2 on page 18.

cdms.createUniformGrid(startLat, nlat, deltaLat, startLon, nlon,
deltaLon, order="yx", mask=None)

See Table 2.2 on page 18.

cdms.createZonalGrid(grid)

See Table 2.2 on page 18.

Table 2.29 RectGrid Methods

Type Definition

Axis getAxis(Integer n)

Get the n-th axis.

n is either 0 or 1.

Table 2.28 RectGrid Constructors
Climate Data Management System

RectGrid
Tuple getBounds()

Get the grid boundary arrays.

Returns a tuple (latitudeArray, longitudeArray), where lati-
tudeArray is a Numeric array of latitude bounds, with shape
(n,2), and longitudeArray is a similar array for longitude
bounds.

If no boundary arrays are explicitly defined (in the file or
dataset), the result depends on the autoBounds mode (see
cdms.setAutoBounds) and the grid classification mode (see
cdms.setClassifyGrids). By default, autoBounds mode is
enabled, in which case the boundary arrays are generated
based on the type of grid. If disabled, the return value is
(None,None).

The grid classification mode specifies how the grid type is to
be determined. By default, the grid type (Gaussian, uniform,
etc.) is determined by calling grid.classifyInFamily. If the
mode is ’off’ grid.getType is used instead

Axis getLatitude()

Get the latitude axis of this grid.

Axis getLongitude()

Get the latitude axis of this grid.

Array getMask()

Get the mask array of this grid, if any.

Returns a 2-D Numeric array, having the same shape as the
grid. If the mask is not explicitly defined, the return value is
None.

String getOrder()

Get the grid ordering, either “yx” if latitude is the first axis, or
“xy” if longitude is the first axis.

Table 2.29 RectGrid Methods

Type Definition
Climate Data Management System 75

CDMS Python Application Programming Interface

76
String getType()

Get the grid type, either “gaussian”, “uniform”, “equalarea”,
or “generic”.

(Array,Arra
y)

getWeights()

Get the normalized area weight arrays, as a tuple (latWeights,
lonWeights). It is assumed that the latitude and longitude axes
are defined in degrees.

The latitude weights are defined as:

latWeights[i] = 0.5 * abs(sin(latBounds[i+1]) -
sin(latBounds[i]))

The longitude weights are defined as:

lonWeights[i] = abs(lonBounds[i+1] -
lonBounds[i])/360.0

For a global grid, the weight arrays are normalized such that
the sum of the weights is 1.0

Example: Generate the 2-D weights array, such that
weights[i.j] is the fractional area of grid zone [i,j].

from cdms import MV
latwts, lonwts = grid.getWeights()
weights = MV.outerproduct(latwts, lonwts)

Also see the function area_weights in module
pcmdi.weighting.

Table 2.29 RectGrid Methods

Type Definition
Climate Data Management System

RectGrid
None setBounds(latBounds, lonBounds, persistent=0)

Set the grid boundaries.

latBounds is a NumPy array of shape (n,2), such that the
boundaries of the kth axis value are [latBounds[k,0],lat-
Bounds[k,1]].

lonBounds is defined similarly for the longitude array.

Note: By default, the boundaries are not written to the file or
dataset containing the grid (if any). This allows bounds to be
set on read-only files, for regridding. If the optional argument
persistent is set to 1, the boundary array is written to the file.

None setMask(mask, persistent=0)

Set the grid mask. If persistent==1, the mask values are writ-
ten to the associated file, if any. Otherwise, the mask is associ-
ated with the grid, but no I/O is generated.

mask is a two-dimensional, Boolean-valued Numeric array,
having the same shape as the grid.

None setType(gridtype)

Set the grid type.

gridtype is one of “gaussian”, “uniform”, “equalarea”, or
“generic”.

Table 2.29 RectGrid Methods

Type Definition
Climate Data Management System 77

CDMS Python Application Programming Interface

78
RectGrid subGrid((latStart,latStop),(lonStart,lonStop))

Create a new grid, with latitude index range [latStart : latStop]
and longitude index range [lonStart : lonStop]. Either index
range can also be specified as None, indicating that the entire
range of the latitude or longitude is used. For example,

newgrid = oldgrid.subGrid(None, (lonStart, lonStop))

creates newgrid corresponding to all latitudes, and index range
[lonStart:lonStop] of oldgrid.

If a mask is defined, the subgrid also has a mask correspond-
ing to the index ranges.

Note: The result grid is not associated with any file or dataset.

Table 2.29 RectGrid Methods

Type Definition
Climate Data Management System

RectGrid
RectGrid subGridRegion(latInterval, lonInterval)

Create a new grid corresponding to the coordinate region
defined by latInterval, lonInterval.

latInterval and lonInterval are the coordinate intervals
for latitude and longitude, respectively.

Each interval is a tuple having one of the forms:

(x,y)
(x,y,indicator)
(x,y,indicator,cycle)
None

where x and y are coordinates indicating the interval
[x,y), and:

indicator is a two-character string, where the first char-
acter is 'c' if the interval is closed on the left, 'o' if open,
and the second character has the same meaning for the
right-hand point. (Default: ’co’)

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if grid.isCircular() is
true, the axis is treated as circular with a default value of
360.0.

An interval of None returns the full index interval of the
axis.

If a mask is defined, the subgrid also has a mask correspond-
ing to the index ranges.

Note: The result grid is not associated with any file or dataset.

Table 2.29 RectGrid Methods

Type Definition
Climate Data Management System 79

CDMS Python Application Programming Interface

80
2.11 Variable

A Variable is a multidimensional data object, consisting of:

• a multidimensional data array, possibly masked,

• a collection of attributes

• a domain, an ordered tuple of Axis and/or Grid objects.

A Variable which is contained in a Dataset or CdmsFile is called a persistent
variable. Setting a slice of a persistent Variable writes data to the Dataset or
file, and referencing a Variable slice reads data from the Dataset. Variables
may also be transient, not associated with a Dataset or CdmsFile.

Variables support arithmetic operations. The basic Python operators are +,-
,*,/,**, abs, and sqrt, together with the operations defined in the MV mod-
ule. The result of an arithmetic operation is a transient variable, that is, the
axis information is transferred to the result.

The methods subRegion and subSlice return transient variables. In ddition,
a transient variable may be created with the cdms.createVariable method.
The vcs and regrid module methods take advantage of the attribute, domain,
and mask information in a transient variable.

RectGrid transpose()

Create a new grid, with axis order reversed. The grid mask is
also transposed.

Note: The result grid is not associated with any file or dataset.

Table 2.29 RectGrid Methods

Type Definition
Climate Data Management System

Variable
2.11.1 cu interface support

The cu module defines the original CDAT I/O interface. It is main-
tained for backward compatibility. As of CDMS V3, CDMS variables sup-
port the cu Slab interface defined in “cu Module” on page 161.

Table 2.30 Variable Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id Variable identifier.

String name_in_file The name of the variable in the file or files
which represent the dataset. If different from
id, the variable is ‘aliased’.

Dataset or
CdmsFile

parent The dataset or file which contains the variable.

Tuple shape The length of each axis of the variable.
Climate Data Management System 81

CDMS Python Application Programming Interface

82
Table 2.31 Variable Constructors

Dataset.createVariable(String id, String datatype, List axes)

Create a Variable in a Dataset. This function is not yet implemented.
Climate Data Management System

Variable
CdmsFile.createVariable(String id, String datatype, List axesOr-
Grids)

Create a Variable in a CdmsFile.

id is the name of the variable.

datatype is the MA or Numeric typecode, for example, MA.Float.

axesOrGrids is a list of Axis and/or Grid objects, on which the variable
is defined. Specifying a rectilinear grid is equivalent to listing the grid
latitude and longitude axes, in the order defined for the grid. Note: this
argument can either be a list or a tuple. If the tuple form is used, and
there is only one element, it must have a following comma, e.g.:
(axisobj,).

Table 2.31 Variable Constructors
Climate Data Management System 83

CDMS Python Application Programming Interface

84
cdms.createVariable(array, typecode=None, copy=0, savespace=0,
mask=None, fill_value=None, grid=None, axes=None,
attributes=None, id=None)

Create a transient variable, not associated with a file or dataset.

array is the data values: a Variable, masked array, or Numeric array.

typecode is the MA typecode of the array. Defaults to the typecode of array.

copy is an integer flag: if 1, the variable is created with a copy of the array, if 0
the variable data is shared with array.

savespace is an integer flag: if set to 1, internal Numeric operations will
attempt to avoid silent upcasting.

mask is an array of integers with value 0 or 1, having the same shape as array.
array elements with a corresponding mask value of 1 are considered ‘invalid’,
and are not used for subsequent Numeric operations. The default mask is
obtained from array if present, otherwise is None.

fill_value is the missing value flag. The default is obtained from array if possi-
ble, otherwise is set to 1.0e20 for floating point variables, 0 for integer-valued
variables.

grid is a rectilinear grid object.

axes is a tuple of axis objects. By default the axes are obtained from array if
present. Otherwise for a dimension of length n, the default axis has values [0.,
1., ..., double(n)].

attributes is a dictionary of attribute values. The dictionary keys must be
strings. By default the dictionary is obtained from array if present, otherwise
is empty.

id is the string identifier of the variable. By default the id is obtained from
array if possible, otherwise is set to ’variable_n’ for some integer n.

Table 2.31 Variable Constructors
Climate Data Management System

Variable
Table 2.32 Variable Methods

Type Definition

Variable tvar = var[i:j, m:n]

Read a slice of data from the file or dataset, resulting in a tran-
sient variable. Singleton dimensions are ‘squeezed’ out. Data
is returned in the physical ordering defined in the dataset. The
forms of the slice operator are listed in Table 2.33 on page 94.

var[i:j, m:n] = array

Write a slice of data to the external dataset. The forms of the
slice operator are listed in Table 2.21 on page 32. (Variables in
CdmsFiles only)

Variable tvar = var(selector)

Calling a variable as a function reads the region of data
defined by the selector. The result is a transient variable,
unless raw=1 keyword is specified. ‘See “Selectors” on
page 95.

None assignValue(Array ar)

Write the entire data array. Equivalent to var[:] = ar. (Variables
in CdmsFiles only).

Variable astype(typecode)

Cast the variable to a new datatype. Typecodes are as for MV,
MA, and Numeric modules.

Variable clone(copyData=1)

Return a copy of a transient variable.

If copyData is 1 (the default) the variable data is copied as
well. If copyData is 0, the result transient variable shares the
original transient variable’s data array.
Climate Data Management System 85

CDMS Python Application Programming Interface

86
Transient
Variable

crossSectionRegrid(newLevel, newLatitude,
method="log", missing=None, order=None)

Return a lat/level vertical cross-section regridded to a new set
of latitudes newLatitude and levels newLevel. The variable
should be a function of latitude, level, and (optionally) time.

newLevel is an axis of the result pressure levels.

newLatitude is an axis of the result latitudes.

method is optional, either "log" to interpolate in the log of
pressure (default), or "linear" for linear interpolation.

missing is a missing data value. The default is var.getMissing()

order is an order string such as "tzy" or "zy". The default is
var.getOrder()

See also: regrid, pressureRegrid.

Axis getAxis(n)

Get the n-th axis.

n is an integer.

List getAxisIds()

Get a list of axis identifiers.

Integer getAxisIndex(axis_spec)

Return the index of the axis specificed by axis_spec. Return -1
if no match.

axis_spec is a specification as defined for getAxisList

Table 2.32 Variable Methods

Type Definition
Climate Data Management System

Variable
List getAxisList(axes=None, omit=None, order=None)

Get an ordered list of axis objects in the domain of the vari-
able..

If axes is not None, include only certain axes. Otherwise axes
is a list of specifications as described below. Axes are returned
in the order specified unless the order keyword is given.

If omit is not None, omit those specified by an integer dimen-
sion number. Otherwise omit is a list of specifications as
described below.

order is an optional string determining the output order.

Specifications for the axes or omit keywords are a list, each
element having one of the following forms:

• an integer dimension index, starting at 0.

• a string representing an axis id or one of the strings
’time’, ’latitude’, ’lat’, ’longitude’, ’lon’,

’lev’ or ’level’.

• a function that takes an axis as an argument and returns a
value. If the value returned is true, the axis matches.

• an axis object; will match if it is the same object as axis.
order can be a string containing the characters

t,x,y,z, or -. If a dash (’-’) is given, any elements of the
result not chosen otherwise are filled in from left to right with
remaining candidates.

List getAxisListIndex(axes=None, omit=None,
order=None)

Return a list of indices of axis objects. Arguments are as for
getAxisList.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System 87

CDMS Python Application Programming Interface

88
List getDomain()

Get the domain. Each element of the list is itself a tuple of the
form

(axis,start,length,true_length)

where axis is an axis object, start is the start index of the
domain relative to the axis object, length is the length of the
axis, and true_length is the actual number of (defined) points in
the domain.

See also: getAxisList.

Grid getGrid()

Return the associated grid, or None if the variable is not grid-
ded.

Axis getLatitude()

Get the latitude axis, or None if not found.

Axis getLevel()

Get the vertical level axis, or None if not found.

Axis getLongitude()

Get the longitude axis, or None if not found.

Various getMissing()

Get the missing data value, or None if not found.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System

Variable
String getOrder()

Get the order string of a spatio-temporal variable. The order
string specifies the physical ordering of the data. It is a string
of characters with length equal to the rank of the variable, indi-
cating the order of the variable’s time, level, latitude, and/or
longitude axes. Each character is one of:

’t’: time
’z’: vertical level
’y: latitude
’x’: longitude
’-’: the axis is not spatio-temporal.

Example: A variable with ordering “tzyx” is 4-dimensional,
where the ordering of axes is (time, level, latitude, longitude).

Note: The order string is of the form required for the order
argument of a regridder function.

List getPaths(*intervals)

Get the file paths associated with the index region specified by
intervals.

intervals is a list of scalars, 2-tuples representing [i,j), slices,
and/or Ellipses. If no argument(s) are present, all file paths
associated with the variable are returned.

Returns a list of tuples of the form (path,slicetuple), where
path is the path of a file, and slicetuple is itself a tuple of
slices, of the same length as the rank of the variable, represent-
ing the portion of the variable in the file corresponding to
intervals.

Note: This function is not defined for transient variables.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System 89

CDMS Python Application Programming Interface

90
String getTemplate()

Get the file template associated with this variable. If no tem-
plate is associated with the variable, the dataset template is
returned.

Note: This function is not defined for transient variables.

Axis getTime()

Get the time axis, or None if not found.

Integer len(var)

The length of the first dimension of the variable. If the variable
is zero-dimensional (scalar), a length of 0 is returned.

Note: size() returns the total number of elements.

Transient
Variable

pressureRegrid (newLevel, method="log", miss-
ing=None, order=None)

Return the variable regridded to a new set of pressure levels
newLevel. The variable must be a function of latitude, longi-
tude, pressure level, and (optionally) time.

newLevel is an axis of the result pressure levels.

method is optional, either "log" to interpolate in the log of
pressure (default), or "linear" for linear interpolation.

missing is a missing data value. The default is var.getMissing()

order is an order string such as "tzyx" or "zyx". The default is
var.getOrder()

See also: regrid, crossSectionRegrid.

Integer rank()

The number of dimensions of the variable.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System

Variable
Transient
Variable

regrid (togrid, missing=None, order=None,
mask=None)

Return the variable regridded to the horizontal grid togrid.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is a string indicating the order of dimensions of the
array. It has the form returned from variable.getOrder(). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions of array match
the input grid.

mask is a Numeric array, of datatype Integer or Float, consist-
ing of ones and zeros. A value of 0 or 0.0 indicates that the
corresponding data value is to be ignored for purposes of
regridding. If mask is two-dimensional of the same shape as
the input grid, it overrides the mask of the input grid. If the
mask has more than two dimensions, it must have the same
shape as array. In this case, the missing data value is also
ignored. Such an n-dimensional mask is useful if the pattern of
missing data varies with level (e.g., ocean data) or time.
Note: If neither missing or mask is set, the default mask is
obtained from the mask of the array if any.

See also: crossSectionRegrid, pressureRegrid.

None setAxis(n, axis)

Set the n-th axis (0-origin index) of to a copy of axis.

None setAxisList(axislist)

Set all axes of the variable. axislist is a list of axis objects.

None setMissing(value)

Set the missing value.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System 91

CDMS Python Application Programming Interface

92
Integer size()

Number of elements of the variable.

Variable subRegion(*region, time=None, level=None, lati-
tude=None, longitude=None, squeeze=0, raw=0)

Read a coordinate region of data, returning a transient vari-
able. A region is a hyperrectangle in coordinate space.

region is an argument list, each item of which specifies an
interval of a coordinate axis. The intervals are listed in the
order of the variable axes. If trailing dimensions are omitted,
all values of those dimensions are retrieved. If an axis is circu-
lar (axis.isCircular() is true) or cycle is specified (see below),
then data will be read with wraparound in that dimension.
Only one axis may be read with wraparound. A coordinate
interval has one of the forms listed in Table 2.34 on page 94.
Also see axis.mapIntervalExt.

The optional keyword arguments time, level, latitude, and lon-
gitude may also be used to specify the dimension for which the
interval applies. This is particularly useful if the order of
dimensions is not known in advance. An exception is raised if
a keyword argument conflicts with a positional region argu-
ment.

The optional keyword argument squeeze determines whether
or not the shape of the returned array contains dimensions
whose length is 1; by default this argument is 0, and such
dimensions are not ’squeezed out’.

The optional keyword argument raw specifies whether the
return object is a variable or a masked array. By default, a tran-
sient variable is returned, having the axes and attributes corre-
sponding to the region read. If raw=1, an MA masked array is
returned, equivalent to the transient variable without the axis
and attribute information.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System

Variable
Example: Get a region of data.

Variable ta is a function of (time, latitude, longitude). Read data correspond-
ing to all times, latitudes -45.0 up to but not including +45.0, longitudes 0.0
through and including longitude 180.0:

Variable subSlice(*specs, time=None, level=None, lati-
tude=None, longitude=None, squeeze=0, raw=0)

Read a slice of data, returning a transient variable. This is a
functional form of the slice operator [] with the squeeze option
turned off.

specs is an argument list, each element of which specifies a
slice of the corresponding dimension. There can be zero or
more positional arguments, each of the form:

(a) a single integer n, meaning slice(n, n+1)

(b) an instance of the slice class

(c) a tuple, which will be used as arguments to create a slice

(d) ’:’, which means a slice covering that entire dimension

(e) Ellipsis (...), which means to fill the slice list with ’:’ leav-
ing only enough room at the end for the remaining positional
arguments

(f) a Python slice object, of the form slice(i,j,k)

If there are fewer slices than corresponding dimensions, all
values of the trailing dimensions are read.

The keyword arguments are defined as in subRegion.

There must be no conflict between the positional arguments
and the keywords.

In (a)-(c) and (f), negative numbers are treated as offsets from
the end of that dimension, as in normal Python indexing.

String typecode()

The Numeric datatype identifier.

Table 2.32 Variable Methods

Type Definition
Climate Data Management System 93

CDMS Python Application Programming Interface

94
data = ta.subRegion(’:’, (-45.0,45.0,’co’), (0.0, 180.0))

or equivalently:

data = ta.subRegion(latitude=(-45.0,45.0,’co’), longitude=(0.0,
180.0)

Read all data for March, 1980:

data = ta.subRegion(time=(’1980-3’,’1980-4’,’co’))

Table 2.33 Variable Slice Operators

[i] The ith element, zero-origin indexing.

[i:j] The ith element through, but not including, element j

[i:] The ith element through the end

[:j] The beginning element through, but not including, element j

[:] The entire array

[i:j:k] Every kth element

[i:j, m:n] Multidimensional slice

[i, ..., m] (Ellipsis) All dimensions between those specified.

[-1] Negative indices 'wrap around'. -1 is the last element.

Table 2.34 Index and Coordinate Intervals

Interval Definition Example

x single point, such that axis[i]==x

In general x is a scalar. If the axis is a time
axis, x may also be a cdtime relative time type,
component time type, or string of the form
’yyyy-mm-dd hh:mi:ss’ (where trailing fields
of the string may be omitted.

180.0

cdtime.rel-
time(48,”hour
s since 1980-
1”)

’1980-1-3’

(x,y) indices i such that x <= axis[i] <= y (-180,180)
Climate Data Management System

Variable
2.11.2 Selectors

A selector is a specification of a region of data to be selected from a
variable. For example, the statement

x = v(time=’1979-1-1’, level=(1000.0,100.0))

means ‘select the values of variable v for time ’1979-1-1’ and levels 1000.0
to 100.0 inclusive, setting x to the result.’ Selectors are generally used to
represent regions of space and time.

The form for using a selector is

result = v(s)

where v is a variable and s is the selector. An equivalent form is

result = f(‘varid’, s)

where f is a file or dataset, and ‘varid’ is the string ID of a variable.

(x,y,'co') x <= axis[i] < y
The third item is defined as in mapInterval.

(-90,90,'cc')

(x,y,'co',cy
cle)

x<= axis[i] < y, with wraparound
Note: It is not necesary to specify the cycle of
a circular longitude axis, that is, for which
axis.isCircular() is true.

(180, 180,
'co', 360.0)

slice(i,j,k) slice object, equivalent to i:j:k in a slice opera-
tor. Refers to the indices i, i+k, i+2k, ... up to
but not including index j. If i is not specified
or is None it defaults to 0. If j is not specified
or is None it defaults to the length of the axis.
The stride k defaults to 1. k may be negative.

slice(1,10)

slice(,,-1)
reverses the
direction of
the axis.

':' all axis values of one dimension

Ellipsis all values of all intermediate axes

Table 2.34 Index and Coordinate Intervals

Interval Definition Example
Climate Data Management System 95

CDMS Python Application Programming Interface

96
A selector consists of a list of selector components. For example, the selec-
tor

time=’1979-1-1’, level=(1000.0,100.0)

has two components: time=’1979-1-1’, and level=(1000.0,100.0). This
illustrates that selector components can be defined with keywords, using the
form:

keyword=value

Note that for the keywords time, level, latitude, and longitude, the selec-
tor can be used with any variable. If the corresponding axis is not found, the
selector component is ignored. This is very useful for writing general pur-
pose scripts. The required keyword overrides this behavior. These key-
words take values that are coordinate ranges or index ranges as defined in
Table 2.34 on page 94.

The following keywords are available:

Table 2.35 Selector keywords

Keyword Description Value

axisid Restrict the axis with ID axisid to
a value or range of values.

See Table 2.34 on page 94

grid Regrid the result to the grid. Grid object

latitude Restrict latitude values to a value
or range. Short form: lat

See Table 2.34 on page 94

level Restrict vertical levels to a value
or range. Short form: lev

See Table 2.34 on page 94

longitude Restrict longitude values to a
value or range. Short form: lon

See Table 2.34 on page 94

order Reorder the result. Order string, e.g., “tzyx”

raw Return a masked array
(MA.array) rather than a tran-
sient variable.

0: return a transient variable
(default); =1: return a
masked array.
Climate Data Management System

Variable
Another form of selector components is the positional form, where the com-
ponent order corresponds to the axis order of a variable. For example:

x9 = hus((’1979-1-1’,’1979-2-1’),1000.0)

reads data for the range (’1979-1-1’,’1979-2-1’) of the first axis, and coor-
dinate value 1000.0 of the second axis. Non-keyword arguments of the
form(s) listed in Table 2.34 on page 94 are treated as positional. Such selec-
tors are more concise, but not as general or flexible as the other types
described in this section.

Selectors are objects in their own right. This means that a selector can be
defined and reused, independent of a particular variable. Selectors are con-
structed using the cdms.selectors.Selector class. The constructor takes an
argument list of selector components. For example:

from cdms.selectors import Selector
sel = Selector(time=(’1979-1-1’,’1979-2-1’), level=1000.)
x1 = v1(sel)
x2 = v2(sel)

For convenience CDMS provides several predefined selectors, which can
be used directly or can be combined into more complex selectors. The
selectors time, level, latitude, longitude, and required are equivalent to
their keyword counterparts. For example:

from cdms import time, level
x = hus(time(’1979-1-1’,’1979-2-1’), level(1000.))

and

required Require that the axis IDs be
present.

List of axis identifiers.

squeeze Remove singleton dimensions
from the result.

0: leave singleton dimen-
sions (default); 1: remove
singleton dimensions.

time Restrict time values to a value or
range.

See Table 2.34 on page 94

Table 2.35 Selector keywords

Keyword Description Value
Climate Data Management System 97

CDMS Python Application Programming Interface

98
x = hus(time=(’1979-1-1’,’1979-2-1’), level=1000.)

are equivalent. Additionally, the predefined selectors latitudeslice, lon-

gitudeslice, levelslice, and timeslice take arguments (startindex, stopin-
dex[, stride]):

from cdms import timeslice, levelslice
x = v(timeslice(0,2), levelslice(16,17))

Finally, a collection of selectors is defined in module cdutil.region:

from cdutil.region import *
NH=NorthernHemisphere=domain(latitude=(0.,90.)
SH=SouthernHemisphere=domain(latitude=(-90.,0.))
Tropics=domain(latitude=(-23.4,23.4))
NPZ=AZ=ArcticZone=domain(latitude=(66.6,90.))
SPZ=AAZ=AntarcticZone=domain(latitude=(-90.,-66.6))

Selectors can be combined using the & operator, or by refining them in the
call:

from cdms.selectors import Selector
from cdms import level
sel2 = Selector(time=(’1979-1-1’,’1979-2-1’))
sel3 = sel2 & level(1000.0)
x1 = hus(sel3)
x2 = hus(sel2, level=1000.0)

2.11.3 Selector examples

CDMS provides a variety of ways to select or slice data. In the fol-
lowing examples, variable ‘hus’ is contained in file sample.nc, and is a
function of (time, level, latitude, longitude). Time values are monthly start-
ing at 1979-1-1. There are 17 levels, the last level being 1000.0. The name
of the vertical level axis is ‘plev’. All the examples select the first two times
and the last level. The last two examples remove the singleton level dimen-
sion from the result array.

import cdms

f = cdms.open(’sample.nc’)
hus = f.variables[’hus’]

Keyword selection
x = hus(time=(’1979-1-1’,’1979-2-1’), level=1000.)
Climate Data Management System

Examples
Interval indicator (see mapIntervalExt)
x = hus(time=(’1979-1-1’,’1979-3-1’,’co’), level=1000.)

Axis ID (plev) as a keyword
x = hus(time=(’1979-1-1’,’1979-2-1’), plev=1000.)

Positional
x9 = hus((’1979-1-1’,’1979-2-1’),1000.0)

Predefined selectors
from cdms import time, level
x = hus(time(’1979-1-1’,’1979-2-1’), level(1000.))

from cdms import timeslice, levelslice
x = hus(timeslice(0,2), levelslice(16,17))

Call file as a function
x = f(’hus’, time=(’1979-1-1’,’1979-2-1’), level=1000.)

Python slices
x = hus(time=slice(0,2), level=slice(16,17))

Selector objects
from cdms.selectors import Selector
sel = Selector(time=(’1979-1-1’,’1979-2-1’), level=1000.)
x = hus(sel)

sel2 = Selector(time=(’1979-1-1’,’1979-2-1’))
sel3 = sel2 & level(1000.0)
x = hus(sel3)
x = hus(sel2, level=1000.0)

Squeeze singleton dimension (level)
x = hus[0:2,16]
x = hus(time=(’1979-1-1’,’1979-2-1’), level=1000., squeeze=1)

f.close()

2.12 Examples

In this example, two datasets are opened, containing surface air tem-
perature (‘tas’) and upper-air temperature (‘ta’) respectively. Surface air
temperature is a function of (time, latitude, longitude). Upper-air tempera-
ture is a function of (time, level, latitude, longitude). Time is assumed to
Climate Data Management System 99

CDMS Python Application Programming Interface

100

11

12

13

14

15

16
have a relative representation in the datasets (e.g., with units “months since
basetime”).

Data is extracted from both datasets for January of the first input year
through December of the second input year. For each time and level, three
quantities are calculated: slope, variance, and correlation. The results are
written to a netCDF file. For brevity, the functions corrCoefSlope and
removeSeasonalCycle are omitted.

import cdms
from cdms import MV

Calculate variance, slope, and correlation of
surface air temperature with upper air temperature
by level, and save to a netCDF file. ’pathTa’ is the location of
the file containing ta, ’pathTas’ is the file with contains tas.
Data is extracted from January of year1 through December of year2.
def ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,month1,month2):

Open the files for ta and tas
fta = cdms.open(pathTa)
ftas = cdms.open(pathTas)

Get upper air temperature
taObj = fta[’ta’]
levs = taObj.getLevel()

Get the surface temperature for the closed interval [time1,time2]
tas = ftas(’tas’, time=(month1,month2,’cc’))

Allocate result arrays
newaxes = taObj.getAxisList(omit=’time’)
newshape = tuple([len(a) for a in newaxes])
cc = MV.zeros(newshape, typecode=MV.Float, axes=newaxes, id=’correlation’)
b = MV.zeros(newshape, typecode=MV.Float, axes=newaxes, id=’slope’)
v = MV.zeros(newshape, typecode=MV.Float, axes=newaxes, id=’variance’)

Remove seasonal cycle from surface air temperature
tas = removeSeasonalCycle(tas)

For each level of air temperature, remove seasonal cycle
from upper air temperature, and calculate statistics
for ilev in range(len(levs)):

ta = taObj.subRegion(time=(month1,month2,’cc’), \
level=slice(ilev, ilev+1), squeeze=1)

ta = removeSeasonalCycle(ta)
cc[ilev], b[ilev] = corrCoefSlope(tas ,ta)
v[ilev] = MV.sum(ta**2)/(1.0*ta.shape[0])

Write slope, correlation, and variance variables
f = cdms.open(’CC_B_V_ALL.nc’,’w’)
f.title = ’filtered’
f.write(b)
f.write(cc)
f.write(v)
f.close()
Climate Data Management System

Examples

7

8

if __name__==’__main__’:
pathTa = ’/pcmdi/cdms/sample/ccmSample_ta.xml’
pathTas = ’/pcmdi/cdms/sample/ccmSample_tas.xml’
Process Jan80 through Dec81
ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,’80-1’,’81-12’)

Notes:

1. Two modules are imported, cdms, and MV. MV implements arithmetic func-
tions.

2. taObj is a file (persistent) variable. At this point, no data has actually been read.
This happens when the file variable is sliced, or when the subRegion function is
called. levs is an axis.

3. Calling the file like a function reads data for the given variable and time range.
Note that month1 and month2 are time strings.

4. In contrast to taObj, the variables cc, b, and v are transient variables, not asso-
ciated with a file. The assigned names are used when the variables are written.

5. Another way to read data is to call subRegion on the variable. The squeeze
option removes singleton axes, in this case the level axis.

6. Write the data. Axis information is written automatically.

7. This is the main routine of the script. pathTa and pathTas pathnames. Data is
processed from January 1980 through December 1981.

In the next example, the pointwise variance of a variable over time is calcu-
lated, for all times in a dataset. The name of the dataset and variable are
entered, then the variance is calculated and plotted via the vcs module.

#!/usr/bin/env python
#
Calculates gridpoint total variance
from an array of interest
#

import cdms
from MV import *

Wait for return in an interactive window
def pause():

print ’Hit return to continue: ’,
line = sys.stdin.readline()

Calculate pointwise variance of variable over time
Returns the variance and the number of points
for which the data is defined, for each grid point
def calcVar(x):
Climate Data Management System 101

CDMS Python Application Programming Interface

102

9

10

11
Check that the first axis is a time axis
firstaxis = x.getAxis(0)
if not firstaxis.isTime():

raise ’First axis is not time, variable:’, x.id

n = count(x,0)
sumxx = sum(x*x)
sumx = sum(x)
variance = (n*sumxx - (sumx * sumx))/(n * (n-1.))

return variance,n

if __name__==’__main__’:
import vcs, sys

print ’Enter dataset path [/pcmdi/cdms/obs/erbs_mo.xml]: ’,
path = string.strip(sys.stdin.readline())
if path==’’: path=’/pcmdi/cdms/obs/erbs_mo.xml’

Open the dataset
dataset = cdms.open(path)

Select a variable from the dataset
print ’Variables in file:’,path
varnames = dataset.variables.keys()
varnames.sort()
for varname in varnames:

var = dataset.variables[varname]
if hasattr(var,’long_name’):

long_name = var.long_name
elif hasattr(var,’title’):

long_name = var.title
else:

long_name = ’?’
print ’%-10s: %s’%(varname,long_name)

print ’Select a variable: ’,
varname = string.strip(sys.stdin.readline())
var = dataset(varname)
dataset.close()

Calculate variance, count, and set attributes
variance,n = calcVar(var)
variance.id = ’variance_%s’%var.id
n.id = ’count_%s’%var.id
if hasattr(var,’units’):

variance.units = ’(%s)^2’%var.units

Plot variance
w=vcs.init()
w.plot(variance)
pause()
w.clear()
w.plot(n)
pause()
w.clear()

The result of running this script is as follows:
Climate Data Management System

Examples
% calcVar.py
Enter dataset path [/pcmdi/cdms/sample/obs/erbs_mo.xml]:
Variables in file: /pcmdi/cdms/sample/obs/erbs_mo.xml

albt : Albedo TOA [%]
albtcs : Albedo TOA clear sky [%]
rlcrft : LW Cloud Radiation Forcing TOA [W/m^2]
rlut : LW radiation TOA (OLR) [W/m^2]
rlutcs : LW radiation upward TOA clear sky [W/m^2]
rscrft : SW Cloud Radiation Forcing TOA [W/m^2]
rsdt : SW radiation downward TOA [W/m^2]
rsut : SW radiation upward TOA [W/m^2]
rsutcs : SW radiation upward TOA clear sky [W/m^2]
Select a variable: albt

<The variance is plotted>

Hit return to continue:

<The number of points is plotted>

Notes:

8. n = count(x, 0) returns the pointwise number of valid values, summing across
axis 0, the first axis. count is an MV function.

9. dataset is a Dataset or CdmsFile object, depending on whether a .xml or .nc
pathname is entered. dataset.variables is a dictionary mapping variable
name to file variable.

10. var is a transient variable.

11. Plot the variance and count variables. Spatial longitude and latitude information
are carried with the computations, so the continents are plotted correctly.
Climate Data Management System 103

CDMS Python Application Programming Interface

104
 Climate Data Management System

CHAPTER 3 cdtime Module
3.1 Time types

The cdtime module implements the CDMS time types, methods, and
calendars. These are made available with the command

import cdtime

Two time types are available: relative time and component time. Relative
time is time relative to a fixed base time. It consists of:

• a units string, of the form “units since basetime”, and

• a floating-point value

For example, the time “28.0 days since 1996-1-1” has value=28.0, and
units=”days since 1996-1-1”

Component time consists of the integer fields year, month, day, hour,

minute, and the floating-point field second. A sample component time is
1996-2-28 12:10:30.0
Climate Data Management System 105

cdtime Module

106
The cdtime module contains functions for converting between these forms,
based on the common calendars used in climate simulation. Basic arith-
metic and comparison operators are also available.

3.2 Calendars

A calendar specifies the number of days in each month, for a given
year. cdtime supports these calendars:

• cdtime.GregorianCalendar: years evenly divisible by four are leap years,
except century years not evenly divisible by 400. This is sometimes called the
proleptic Gregorian calendar, meaning that the algorithm for leap years applies
for all years.

• cdtime.MixedCalendar: mixed Julian/Gregorian calendar. Dates before 1582-
10-15 are encoded with the Julian calendar, otherwise are encoded with the Gre-
gorian calendar. The day immediately following 1582-10-4 is 1582-10-15. This
is the default calendar.

• cdtime.JulianCalendar: years evenly divisible by four are leap years,

• cdtime.NoLeapCalendar: all years have 365 days,

• cdtime.Calendar360: all months have 30 days.

Several cdtime functions have an optional calendar argument. The default
calendar is the MixedCalendar. The default calendar may be changed with
the command:

cdtime.DefaultCalendar = newCalendar

3.3 Time Constructors

The following table describes the methods for creating time types.
Climate Data Management System

Time Constructors
Table 3.1 Time Constructors

Type Definition

Reltime cdtime.reltime(value, relunits)

Create a relative time type.

value is an integer or floating point value.

relunits is a string of the form “unit(s) [since basetime]”
where

unit = [second | minute | hour | day | week | month |

season | year]

basetime has the form yyyy-mm-dd hh:mi:ss. The default
basetime is 1979-1-1, if no since clause is specified.

Example:

r = cdtime.reltime(28, “days since 1996-1-1”)

Comptime cdtime.comptime(year, month=1, day=1, hour=0,
minute=0, second=0.0)

Create a component time type.

year is an integer.

month is an integer in the range 1 .. 12

day is an integer in the range 1 .. 31

hour is an integer in the range 0 .. 59

minute is an integer in the range 0 .. 59

second is a floating point number in the range 0.0 ,, 60.0

Example: c = cdtime.comptime(1996, 2, 28)
Climate Data Management System 107

cdtime Module

108
3.4 Relative Time

A relative time type has two members, value and units. Both can be
set.

Comptime cdtime.abstime(absvalue, absunits)

Create a component time from an absolute time representation.

absvalue is a floating-point encoding of an absolute time.

absunits is the units template, a string of the form “unit as

format", where unit is one of second, minute, hour, day,

calendar_month, or calendar_year. format is a string of
the form "%x[%x[...]][.%f]", where x is one of the format
letters ’Y’ (year, including century), ’m’ (two digit month,
01=January), ’d’ (two-digit day within month), ’H’ (hours
since midnight), ’M’ (minutes), or ’S’ (seconds). The optional
’.%f’ denotes a floating-point fraction of the unit.

Example: c = cdtime.abstime(19960228.0, “day as

%Y%m%d.%f”)

Table 3.2 Relative Time Members

Type Name Summary

Float value Number of units

String units Relative units, of the form “unit(s) since

basetime”

Table 3.1 Time Constructors

Type Definition
Climate Data Management System

Component Time
3.5 Component Time

A component time type has six members, all of which are settable.

3.6 Time Methods

The following methods apply both to relative and component times.

Table 3.3 Component Time Members

Type Name Summary

Integer year Year value

Integer month Month, in the range 1..12

Integer day Day of month, in the range 1 .. 31

Integer hour Hour, in the range 0 .. 59

Integer minute Minute, in the range 0 .. 59

Float second Seconds, in the range 0.0 .. 60.0
Climate Data Management System 109

cdtime Module

110
Table 3.4 Time Methods

Type Definition

Comptime
or Reltime

t.add(value, intervalUnits, calendar=cdtime.Default-
Calendar)

Add an interval of time to a time type t. Returns the same type
of time.

value is the Float number of interval units.

intervalUnits is cdtime.[Second(s) | Minute(s) | Hour(s)

| Day(s) | Week(s) | Month(s) | Season(s) | Year(s)]

calendar is the calendar type.

Example:

>>> from cdtime import *
>>> c = comptime(1996,2,28)
>>> r = reltime(28,"days since 1996-1-1")
>>> print r.add(1,Days)
29.00 days since 1996-1-1
>>> print c.add(36,Hour)
1996-2-29 12:0:0.0

Integer t.cmp(t2, calendar=cdtime.DefaultCalendar)

Compare time values t and t2. Returns -1, 0, 1 as t is less than,
equal to, or greater than t2 respectively.

t2 is the time to compare.

calendar is the calendar type.

Example:

>>> from cdtime import *
>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> c = comptime(1996,2,28)
>>> print r.cmp(c)
-1
>>> print c.cmp(r)
1
>>> print r.cmp(r)
0

Climate Data Management System

Time Methods
Comptime
or Reltime

t.sub(value, intervalUnits, calendar=cdtime.Default-
Calendar)

Subtract an interval of time from a time type t. Returns the
same type of time.

value is the Float number of interval units.

intervalUnits is cdtime.[Second(s) | Minute(s) | Hour(s)

| Day(s) | Week(s) | Month(s) | Season(s) | Year(s)]

calendar is the calendar type.

Example:

>>> from cdtime import *
>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> c = comptime(1996,2,28)
>>> print r.sub(10,Days)
18.00 days since 1996-1-1
>>> print c.sub(30,Days)
1996-1-29 0:0:0.0

Comptime t.tocomp(calendar = cdtime.DefaultCalendar)

Convert to component time. Returns the equivalent component
time.

calendar is the calendar type.

Example:

>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> r.tocomp()
1996-1-29 0:0:0.0

Reltime t.torel(units, calendar=cdtime.DefaultCalendar)

Convert to relative time. Returns the equivalent relative time.

Example:

>>> c = comptime(1996,2,28)
>>> print c.torel("days since 1996-1-1")
58.00 days since 1996-1-1
>>> r = reltime(28,"days since 1996-1-1")
>>> print r.torel("days since 1995")
393.00 days since 1995
>>> print r.torel("days since 1995").value
393.0

Table 3.4 Time Methods

Type Definition
Climate Data Management System 111

cdtime Module

112
 Climate Data Management System

CHAPTER 4 Regridding Data
4.1 Overview

CDMS has functions to interpolate gridded data:

• from one horizontal (lat/lon) grid to another

• from one set of pressure levels to another

• from one vertical (lat/level) cross-section to another vertical cross-section.

4.1.1 Horizontal regridder

The simplest method to regrid a variable from one horizontal, lat/lon grid to
another is to use the regrid function defined for variables. This function
takes the target grid as an argument, and returns the variable regridded to
the target grid:

>>> import cdms
>>> f = cdms.open(’/pcmdi/cdms/exp/cmip2/ccc/perturb.xml’)
>>> rlsf = f(’rls’) # Read the data
>>> rlsf.shape
(4, 48, 96)
>>> g = cdms.open(’/pcmdi/cdms/exp/cmip2/mri/perturb.xml’)
>>> rlsg = g[’rls’] # Get the file variable (no data read)
Climate Data Management System 113

Regridding Data

114
>>> outgrid = rlsg.getGrid() # Get the target grid
>>> rlsnew = rlsf.regrid(outgrid)
>>> rlsnew.shape
(4, 46, 72)
>>> outgrid.shape
(46, 72)

A somewhat more efficient method is to create a regridder function. This
has the advantage that the mapping is created only once and can be used for
multiple arrays. Also, this method can be used with data in the form of an
MA.MaskedArray or Numeric array. The steps in this process are:

• Given an input grid and output grid, generate a regridder function.

• Call the regridder function on a Numeric array, resulting in an array defined on
the output grid. The regridder function can be called with any array or variable
defined on the input grid.

The following example illustrates this process. The regridder function is
generated at line 9, and the regridding is performed at line 10:

1 #!/usr/bin/env python
2 import cdms
3 from regrid import Regridder
4 f = cdms.open(’/pcmdi/cdms/exp/cmip2/ccc/perturb.xml’)
5 rlsf = f[’rls’]
6 ingrid = rlsf.getGrid()
7 g = cdms.open(’/pcmdi/cdms/exp/cmip2/mri/perturb.xml’)
8 outgrid = g[’rls’].getGrid()
9 regridfunc = Regridder(ingrid, outgrid)

10 rlsnew = regridfunc(rlsf)
11 f.close()
12 g.close()

Line Notes

2 Makes the CDMS module available.

3 Makes the Regridder class available from the regrid module.

4 Opens the input dataset.
Climate Data Management System

Overview
4.1.2 Pressure-level regridder

To regrid a variable which is a function of latitude, longitude, pres-
sure level, and (optionally) time to a new set of pressure levels, use the
pressureRegrid function defined for variables. This function takes an axis
representing the target set of pressure levels, and returns a new variable d
regridded to that dimension.

>>> var.shape
(3, 16, 32)
>>> var.getAxisIds()
[’level’, ’latitude’, ’longitude’]
>>> len(levout)
2
>>> result = var.pressureRegrid(levout)
>>> result.shape
(2, 16, 32)

4.1.3 Cross-section regridder

To regrid a variable which is a function of latitude, height, and
(optionally) time to a new latitude/height cross-section, use the crossSec-

5 Gets the variable object named ‘rls’. No data is read.

6 Gets the input grid.

7 Opens a dataset to retrieve the output grid.

8 The output grid is the grid associated with the variable named ‘rls’

in dataset g. Just the grid is retrieved, not the data.

9 Generates a regridder function regridfunc.

10 Reads all data for variable rlsf, and calls the regridder function on
that data, resulting in a transient variable rlsnew.

Line Notes
Climate Data Management System 115

Regridding Data

116
tionRegridder defined for variables. This function takes as arguments the
new latitudes and heights, and returns the variable regridded to those axes.

>>> varin.shape
(11, 46)
>>> varin.getAxisIds()
[’level’, ’latitude’]
>>> levOut[:]
[10., 30., 50., 70., 100., 200., 300., 400., 500.,

700., 850.,
1000.,]

>>> varout = varin.crossSectionRegrid(levOut, latOut)
>>> varout.shape
(12, 64)

4.2 regrid module

The regrid module implements the regridding functionality. Although
this module is not strictly a part of CDMS, it is designed to work with
CDMS objects. The Python command

from regrid import Regridder

makes the Regridder class available within a Python program. An instance
of Regridder is a function which regrids data from input to output grid.

Table 4.1 Regridder Constructor

regridFunction = Regridder(inputGrid, outputGrid)

Create a regridder function which interpolates a data array from input to out-
put grid. Table 4.2 on page 120 describes the calling sequence of this function.

inputGrid and outputGrid are CDMS grid objects.

Note: To set the mask associated with inputGrid or outputGrid, use the grid
setMask function.
Climate Data Management System

regridder functions
4.3 regridder functions

A regridder function is an instance of the Regridder class. The func-
tion is associated with an input and output grid. Typically its use is straight-
forward: the function is passed an input array and returns the regridded
array. However, when the array has missing data, or the input and/or output
grids are masked, the logic becomes more complicated.

Step 1: The regridder function first forms an input mask. This mask is either
two-dimensional or ‘n-dimensional’, depending on the rank of the user-sup-
plied mask. If no mask or missing value is specified, the mask is obtained
from the data array mask if present.

Two-dimensional case:

•Let mask_1 be the two-dimensional user mask supplied via the mask argu-
ment, or the mask of the input grid if no user mask is specified.

•If a missing-data value is specified via the missing argument, let the
implicit_mask be the two-dimensional mask defined as 0 where the first hori-
zontal slice of the input array is missing, 1 elsewhere.

•The input mask is the logical AND(mask_1, implicit_mask)

N-dimensional case: If the user mask is 3 or 4-dimensional with the
same shape as the input array, it is used as the input mask.

Step 2: The data is then regridded. In the two-dimensional case, the input
mask is ‘broadcast’ across the other dimensions of the array. In other words,
it assumes that all horizontal slices of the array have the same mask. The
result is a new array, defined on the output grid. Optionally, the regridder
function can also return an array having the same shape as the output array,
defining the fractional area of the output array which overlaps a non-miss-
ing input grid cell. This is useful for calculating area-weighted means of
masked data.

Step 3: Finally, if the output grid has a mask, it is applied to the result array.
Where the output mask is 0, data values are set to the missing data value, or
1.0e20 if undefined. The result array or transient variable will have a mask
Climate Data Management System 117

Regridding Data

118
value of 1 (invalid value) for those output grid cells which completely over-
lap input grid cells with missing values.
Climate Data Management System

regridder functions
Climate Data Management System 119

Regridding Data

120
Table 4.2 Regridder function

Type

Array or
Transient-
Variable

regridFunction(array, missing=None, order=None,
mask=None)

Interpolate a gridded data array to a new grid. The interpola-
tion preserves the area-weighted mean on each horizontal
slice. If array is a Variable, a TransientVariable of the same
rank as the input array is returned, otherwise a masked array is
returned.

array is a Variable, masked array, or Numeric array of rank 2,
3, or 4.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is a string indicating the order of dimensions of the
array. It has the form returned from variable.getOrder(). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions of array match
the input grid.

mask is a Numeric array, of datatype Integer or Float, consist-
ing of a fractional number between 0 and 1. A value of 1 or 1.0
indicates that the corresponding data value is to be ignored for
purposes of regridding. A value of 0 or 0.0 indicates that the
corresponding data value is valid. This is consistent with the
convention for masks used by the MA module. A fractional
value between 0.0 and 1.0 indicates the fraction of the data
value (e.g., the corresponding cell) to be ignored when regrid-
ding. This is useful if a variable is regridded first to grid A and
then to another grid B; the mask when regridding from A to B
would be (1.0 - f) where f is the maskArray returned from the
initial grid operation using the returnTuple argument.

If mask is two-dimensional of the same shape as the input grid,
it overrides the mask of the input grid. If the mask has more
than two dimensions, it must have the same shape as array. In
this case, the missing data value is also ignored. Such an n-
dimensional mask is useful if the pattern of missing data varies
with level (e.g., ocean data) or time.
Note: If neither missing or mask is set, the default mask is
Climate Data Management System

obtained from the mask of the array if any.

Examples
4.4 Examples

Example: Regrid data to a uniform output grid.

1 #!/usr/local/bin/python
2 import cdms
3 from regrid import Regridder
4 f = cdms.open(’rls_ccc_per.nc’)
5 rlsf = f.variables[’rls’]
6 ingrid = rlsf.getGrid()
7 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
8 regridFunc = Regridder(ingrid, outgrid)
9 newrls = regridFunc(rlsf)

10 f.close()

Array, Array regridFunction(ar, missing=None, order=None,
mask=None, returnTuple=1)

If called with the optional returnTuple argument equal to 1, the
function returns a tuple (dataArray, maskArray). dataArray is
the result data array. maskArray is a Float32 array of the same
shape as dataArray, such that maskArray[i,j] is fraction of the
output grid cell [i,j] overlapping a non-missing cell of the
input grid.

Line Notes

4 Open a netCDF file for input.

Table 4.2 Regridder function

Type
Climate Data Management System 121

Regridding Data

122
Example: Get a mask from a separate file, and set as the input grid mask.

1 import cdms
2 from regrid import Regridder
3 #
4 f = cdms.open(’so_ccc_per.nc’)
5 sof = f.variables[’so’]
6 ingrid = sof.getGrid()
7 g = cdms.open(’rls_mri_per.nc’)
8 rlsg = g.variables[’rls’]
9 outgrid = rlsg.getGrid()

10 regridFunc = Regridder(ingrid,outgrid)
11 h = cdms.open(’sft_ccc.nc’)
12 sfmaskvar = h.variables[’sfmask’]
13 sfmask = sfmaskvar[:]
14 outArray = regridFunc(sof.subSlice(time=0),mask=sfmask)
15 f.close()
16 g.close()
17 h.close()

7 Create a 4 x 5 degree output grid. Note that this grid is not associated
with a file or dataset

8 Create the regridder function

9 Read all data and regrid. The missing data value is obtained from
variable rlsf.

Line Notes

6 Get the input grid.

9 Get the output grid

10 Create the regridder function.

Line Notes
Climate Data Management System

Examples
Example: Generate an array of zonal mean values.

1 f = cdms.open(’rls_ccc_per.nc’)
2 rlsf = f.variables[’rls’]
3 ingrid = rlsf.getGrid()
4 outgrid = cdms.createZonalGrid(ingrid)
5 regridFunc = Regridder(ingrid,outgrid)
6 mean = regridFunc(rlsf)
7 f.close()

13 Get the mask.

14 Regrid with a user mask. The subslice call returns a transient variable
corresponding to variable sof at time 0.

Note: Although it cannot be determined from the code, both mask and
the input array sof are four-dimensional. This is the ‘n-dimensional’
case.

Line Notes

3 Get the input grid.

4 Create a zonal grid. outgrid has the same latitudes as ingrid, and a
singleton longitude dimension. createGlobalMeanGrid could be
used here to generate a global mean array.

5 Generate the regridder function.

6 Generate the zonal mean array.

Line Notes
Climate Data Management System 123

Regridding Data

124
Example: Regrid an array with missing data, and calculate the area-
weighted mean of the result.

1 from cdms.MV import *
...

2 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
3 outlatw, outlonw = outgrid.getWeights()
4 outweights = outerproduct(outlatw, outlonw)
5 grid = var.getGrid()
6 sample = var[0,0]
7 latw, lonw = grid.getWeights()
8 weights = outerproduct(latw, lonw)
9 inmask = where(greater(absolute(sample),1.e15),0,1)

10 mean = add.reduce(ravel(inmask*weights*sample))/
add.reduce(ravel(inmask*weights))

11 regridFunc = Regridder(grid, outgrid)
12 outsample, outmask = regridFunc(sample, mask=inmask,

returnTuple=1)
13 outmean = add.reduce(ravel(outmask*outweights*outsample))/

add.reduce(ravel(outmask*outweights))

Line Notes

2 Create a uniform target grid.

3 Get the latitude and longitude weights.

4 Generate a 2-D weights array.

5 Get the input grid. var is a 4-D variable.

6 Get the first horizontal slice from var.

7-8 Get the input weights, and generate a 2-D weights array.

9 Set the 2-D input mask.

10 Calculate the input array area-weighted mean.

11 Create the regridder function.
Climate Data Management System

Examples
12 Regrid. Because returnTuple is set to 1, the result is a tuple (dataAr-
ray, maskArray).

13 Calculate the area-weighted mean of the regridded data. mean and
outmean should be approximately equal.

Line Notes
Climate Data Management System 125

Regridding Data

126
 Climate Data Management System

CHAPTER 5 Plotting CDMS data in
Python
5.1 Overview

Data read via the CDMS Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the CDAT reference manual. The vcs module provides
access to the functionality of the VCS visualization program.

Examples of plotting data accessed from CDMS are given below, as well as
documentation for the plot routine keywords.

5.2 Examples

In the following examples, it is assumed that variable psl is dimen-
sioned (time, latitude, longitude). psl is contained in the dataset named
‘sample.xml’.

5.2.1 Example: plotting a horizontal grid
1 import cdms, vcs
2 #
Climate Data Management System 127

Plotting CDMS data in Python

128
3 f = cdms.open(’sample.xml’)
4 psl = f.variables[’psl’]
5 sample = psl[0]
6 w=vcs.init()
7 #
8 w.plot(sample)
9 f.close()

Notes:

That’s it! The axis coordinates, variable name, description, units, etc. are
obtained from variable sample.

What if the units are not explicitly defined for psl, or a different description
is desired? plot has a number of other keywords which ‘fill in’ the extra plot
information.

5.2.2 Example: using plot keywords.
w.plot(array, xaxis=lon, yaxis=lat, units=’mm/day’,

file_comment=’High-frequency reanalysis’, long_name="Sea level
pressure", comment1="Sample plot", hms="18:00:00", ymd="1978/
01/01")

Line Notes

5 Get a horizontal slice, for the first timepoint.

6 Create a VCS Canvas w.

8 Plot the data. Because sample is a transient variable, it encapsulates
all the time, latitude, longitude, and attribute information.

9 Close the file. This must be done after the reference to the persistent
variable psl.
Climate Data Management System

Examples
Notes:

• Keyword arguments can be listed in any order.

• Specific keywords take precedence over general keywords.

5.2.3 Example: plotting a time-latitude slice

Assuming that variable psl has domain (time,latitude,longitude), this
example selects and plots a time-latitude slice:

1 samp = psl[:,:,0]
2 w = vcs.init()
3 w.plot(samp, name=’sea level pressure’)

Notes:

5.2.4 Example: plotting subsetted data

The subRegion and subSlice methods return a transient variable,
which contains axis and attribute values. These functions are especially use-
ful for reading data to be plotted.

...
1 samp = psl.subRegion(time=(0.0,100.0), longitude=180.0)
2 w = vcs.init()
3 w.plot(samp)

Line Notes

1 samp is a slice of psl, at index 0 of the last dimension. Since samp was
obtained from the slice operator, it is a transient variable, which
includes the latitude and time information.

3 The name keyword defines the identifier, by default the name in the
file.
Climate Data Management System 129

Plotting CDMS data in Python

130
5.3 plot method

The plot method is documented in the CDAT Reference Manual. This
section augments the documentation with a description of the optional key-
word arguments.

The general form of the plot command is:

canvas.plot(array [, args] [,key=value [, key=value [, ...]]])

where:

• canvas is a VCS Canvas object, created with the vcs.init method.

• array is a variable, masked array, or Numeric array having between two and
five dimensions. The last dimensions of the array is termed the ‘x’ dimension,
the next-to-last the ‘y’ dimension, then ‘z’, ‘t’, and ‘w’. For example, if array is
three-dimensional, the axes are (z,y,x), and if array is four-dimensional, the
axes are (t,z,y,x). (Note that the ‘t’ dimension need have no connection with
time; any spatial axis can be mapped to any plot dimension. For a graphics
method which is two-dimensional, such as boxfill, the y-axis is plotted on the
horizontal, and the x-axis on the vertical.

• args are optional positional arguments:

args := template_name, graphics_method, graphics_name
template_name: the name of the VCS template (e.g., ‘AMIP’)
graphics_method : the VCS graphics method (‘boxfill’)
graphics_name: the name of the specific graphics method (‘default’)

See the CDAT Reference Manual and VCS Reference Manual for a
detailed description of these arguments.

• key=value, ... are optional keyword/value pairs, listed in any order. These are
defined in Table 5.1 on page 131.
Climate Data Management System

plot method
Table 5.1 plot keywords

key type value

comment1 string Comment plotted above file_comment

comment2 string Comment plotted above comment1

comment3 string Comment plotted above comment2

continents 0 or 1 if ==1, plot continental outlines (default:
plot if xaxis is longitude, yaxis is
latitude -or- xname is ’longitude’
and yname is ’latitude’

file_comment string Comment, defaults to variable.par-
ent.comment)

grid CDMS grid
object

Grid associated with the data. Defaults to
variable.getGrid()

hms string Hour, minute, second

long_name string Descriptive variable name, defaults to
variable.long_name.

missing_value same type as
array

Missing data value, defaults to vari-
able.getMissing()

name string Variable name, defaults to variable.id

time cdtime rela-
tive or abso-
lute time

time associated with the data. Example:
cdtime.reltime(30.0, “days since
1978-1-1”)

units string Data units. Defaults to variable.units
Climate Data Management System 131

Plotting CDMS data in Python

132
variable CDMS vari-
able object

Variable associated with the data. The
variable grid must have the same
shape as the data array.

xarray
([y|z|t|w]arr
ay)

1-D
Numeric
array

Array of coordinate values, having the
same length as the corresponding
dimension. Defaults to xaxis[:]
(y|z|t|waxis[:])

xaxis
([y|z|t|w]axi
s)

CDMS axis
object

Axis object. xaxis defaults to
grid.getAxis(0), yaxis defaults to
grid.getAxis(1)

xbounds
(ybounds)

2-D
Numeric
array

Boundary array of shape (n,2) where n is
the axis length. Defaults to
xaxis.getBounds(), or xaxis.genGe-
nericBounds() if None, similarly for
ybounds.

xname
([y|z|t|w]na
me)

string Axis name. Defaults to xaxis.id
([y|z|t|w]axis.id)

xrev (yrev) 0 or 1 If xrev (yrev) is 1, reverse the direction of
the x-axis (y-axis). Defaults to 0,
with the following exceptions:

• If the y-axis is latitude, and has decreasing
values, yrev defaults to 1

• If the y-axis is a vertical level, and has
increasing pressure levels, yrev defaults to
1.

xunits
([y|z|t|w]uni
ts)

string Axis units. Defaults to xaxis.units
([y|z|t|w]axis.units).

Table 5.1 plot keywords

key type value
Climate Data Management System

plot method
Climate Data Management System 133

Plotting CDMS data in Python

134
 Climate Data Management System

CHAPTER 6 Climate Data Markup
Language (CDML)
6.1 Introduction

The Climate Data Markup Language (CDML) is the markup lan-
guage used to represent metadata in CDMS. CDML is based on the W3C
XML standard (http://www.w3.org). This chapter defines the syntax of
CDML. Read this section if you will be building or maintaining a CDMS
database.

XML, the eXtensible Markup Language, makes it possible to define
interoperable dialects of markup languages. The most recent version of
HTML, the Web hypertext markup language, is an XML dialect. CDML is
also an XML dialect, geared toward the representation of gridded climate
datasets. XML provides rigor to the metadata representation, ensuring that
applications can access it correctly. XML also deals with internationaliza-
tion issues, and holds forth the promise that utilities for browsing, editing,
and other common tasks will be available in the future.

CDML files have the file extension .xml or .cdml.
Climate Data Management System 135

Climate Data Markup Language (CDML)

136
6.2 Elements

A CDML document consists of a nested collection of elements. An
element is a description of the metadata associated with a CDMS object.
The form of an element is:

<tag attribute-list> element-content </tag>

or

<tag attribute-list />

where

• tag is a string which defines the type of element

• attribute-list is a blank-separated list of attribute-value pairs, of the
form:

attribute = “value”

• element-content depends on the type of element. It is either a list of ele-
ments, or text which defines the element values. For example, the content of an
axis element either is a list of axis values, or is a linear element. For datasets,
the content is the blank-separated list of elements corresponding to the axes,
grids, and variables contained in the dataset.

The CDML elements are:

Table 6.1 CDML Tags

Tag Description

attr Extra attribute

axis Coordinate axis

domain Axes on which a variable is defined

domElem Element of a variable domain

linear Linearly-spaced axis values
Climate Data Management System

Special Characters
6.3 Special Characters

XML reserves certain characters for markup. If they appear as con-
tent, they must be encoded to avoid confusion with markup:

For example, the comment

Certain “special characters”, such as <, >, and ‘, must
be encoded.

would appear in an attribute string as:

comment = “Certain "special characters", such
as <, >, and &apos, must be encoded.”

rectGrid Rectilinear Grid

variable Variable

Table 6.2 Special Character Encodings

Character Encoding

< <

> >

& &

“ "

‘ &apos

Table 6.1 CDML Tags

Tag Description
Climate Data Management System 137

Climate Data Markup Language (CDML)

138
6.4 Identifiers

In CDMS, all objects in a dataset have a unique string identifier. The
id attribute holds the value of this identifier. If the variable, axis, or grid has
a string name within a data file, then the id attribute ordinarily has this
value. Alternatively, the name of the object in a data file can be stored in the
name_in_file attribute, which can differ from the id. Datasets also have
IDs, which can be used within a larger context (databases).

An identifer must start with an alphabetic character (upper or lower case),
an underscore (_), or a colon (:). Characters after the first must be alphanu-
meric, an underscore, or colon. There is no restriction on the length of an
identifier.

6.5 CF Metadata Standard

The CF metadata standard (http://www.cgd.ucar.edu/cms/eaton/
netcdf/CF-current.htm) defines a set of conventions for usage of netCDF.
This standard is supported by CDML. The document defines names and
usage for metadata attributes. CF supersedes the GDT 1.3 standard.

6.6 CDML Syntax

The following notation is used in this section:

• Courier font is used for a syntax specification. Bold font highlights
literals.

• (R|S) denotes ‘either R or S’.

• R* denotes ‘zero or more R’.

• R+ denotes ‘one or more R’.

A CDML document consists of a prolog followed by a single dataset ele-
ment.

1. CDML-document ::= prolog dataset-element
Climate Data Management System

CDML Syntax
The prolog defines the XML version, and the Document Type Definition
(DTD), a formal specification of the document syntax. See http://
www.w3.org/TR/1998/REC-xml-19980210 for a formal definition of XML
Version 1.0.

2. prolog ::=
<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/
~drach/cdms/cdml.dtd">

6.6.1 Dataset Element

A dataset element describes a single dataset. The content is a list of ele-
ments corresponding to the axes, grids, and variables contained in the
dataset. Axis, variable, and grid elements can be listed in any order, and an
element ID can be used before the element is actually defined.

3. dataset-element ::= <dataset dataset-attributes>
dataset-content </dataset>

4. dataset-content ::= (axis-element | grid-element |
variable-element)* extra-attribute-element+

Table 6.3 Dataset Attributes

Attribute
Requ
ired CF GDT Notes

appendi-
ces

N N Y Version number

calendar N N Y Calendar used for encoding time
axes.

“gregorian” | “julian” | “noleap” |
“360_day” | “proleptic_gregorian” |
“standard”

Note: for the CF convention, the cal-
endar attribute is placed on the time
axis.

comment N Y Y Additional dataset information
Climate Data Management System 139

Climate Data Markup Language (CDML)

140
Notes:

• The cdms_filemap attribute describes how the dataset is partitioned into files.
The format is:

filemap ::= [varmap, varmap, ...]
varmap ::= [namelist, slicelist]
namelist ::= [name, name, ...]
slicelist ::= [indexlist, indexlist, ,,,]
indexlist ::= [time0, time1, lev0, lev1, path]
name ::= variable name
time0 ::= first index of time in the file, or ‘-’ if not split on time
time1 ::= last index of time + 1, in the file, or ‘-’ if not split on time

Conven-
tions

Y Y Y The netCDF metadata standard.

Example: “CF-1.0”

cdms_file
map

Y N N Map of partitioned axes to files. See
note below.

directory N N N Root directory of the dataset

frequency N N N Temporal frequency

history N Y Y Evolution of the data

id Y N N Dataset identifier

institution N Y Y Who made or supplied the data

produc-
tion

N N Y How the data was produced (see
source)

project N N N Project associated with the data

Example: “CMIP 2”

references N Y N Published or web-based references
that describe the data or methods used
to produce it.

source N Y N The method of production of the orig-
inal data.

title N Y N A succinct description of the data.

Table 6.3 Dataset Attributes

Attribute
Requ
ired CF GDT Notes
Climate Data Management System

CDML Syntax
lev0 ::= first index of vertical levels in the file, or ‘-’ if not split on level
lev1 ::= last index +1 of vertical levels in the file, or ‘-’ if not split on level
path ::= pathname of the file containing data for this time/level range.

The pathname is appended to the value of the directory attribute, to obtain an
absolute pathname.

6.6.2 Axis Element

An axis element describes a single coordinate axis. The content can be a
blank-separated list of axis values or a linear element. A linear element is a
representation of a linearly-spaced axis as (start, delta, length).

5. axis-element ::= <axis axis-attributes> axis-content>
</axis>

6. axis-content ::= (axis-values | linear-element)
extra-attribute-element*

7. axis-values ::= [value*]

8. linear-element ::= <linear delta=”value”
length=”Integer” start=”value”> </linear>

Table 6.4 Axis Attributes

Attribute
Requ
ired? CF GDT Notes

associate N N Y IDs of variables containing alterna-
tive sets of coordinates.

axis N Y Y The spatial type of the axis:

“T” - time

“X” - longitude

“Y” - latitude

“Z” - vertical level

“-” - not spatiotemporal

bounds N Y Y ID of the boundary variable
Climate Data Management System 141

Climate Data Markup Language (CDML)

142
calendar N Y N See dataset.calendar

climatology N Y N Range of dates to which climato-
logical statistics apply.

comment N Y N String comment

compress N Y Y Dimensions which have been com-
pressed by gathering

datatype Y N N Char, Short, Long, Float, Double,
or String

dates N Y N Range of dates to which statistics
for a typical diurnal cycle apply.

expand N N Y Coordinates prior to contraction

formula_terms N Y N Variables that correspond to the
terms in a formula.

id Y N N Axis identifier. Also the name of
the axis in the underlying file(s), if
name_in_file is undefined.

isvar N N N “true” | “false”

“false” if the axis does not have
coordinate values explicitly
defined in the underlying file(s).

Default: “true”

leap_month N Y N For a user-defined calendar, the
month which is lengthened by a
day in leap years.

leap_year N Y N An example of a leap year for a
user-defined calendar. All years
that differ from this year by a mul-
tiple of four are leap years.

length N N N Number of axis values, including
values for which no data is defined.
Cf. partition_length.

Table 6.4 Axis Attributes

Attribute
Requ
ired? CF GDT Notes
Climate Data Management System

CDML Syntax
6.6.3 Grid Element

A grid element describes a horizontal, latitude-longitude grid which is recti-
linear in topology,

9. grid-element ::= <rectGrid grid-attributes> extra-
attribute-element* </rectGrid>

long_name N Y Y Long description of a physical
quantity

modulo N N Y Arithmetic modulo of an axis with
circular topology.

month_lengths N Y N Length of each month in a non-
leap year for a user-defined calen-
dar.

name_in_file N N N Name of the axis in the underlying
file(s). See id.

partition N N N How the axis is split across files.

partition_lengt
h

N N N Number of axis points for which
data is actually defined. If data is
missing for some values, this will
be smaller than the length.

positive N Y Y Direction of positive for a vertical
axis

standard_name N Y N Reference to an entry in the stan-
dard name table.

topology N N Y Axis topology.

“circular” | “linear”

units Y Y Y Units of a physical quantity

weights N N N Name of the weights array

Table 6.4 Axis Attributes

Attribute
Requ
ired? CF GDT Notes
Climate Data Management System 143

Climate Data Markup Language (CDML)

144
6.6.4 Variable Element

A variable element describes a data variable. The domain of the variable is
an ordered list of domain elements naming the axes on which the variable is
defined. A domain element is a reference to an axis or grid in the dataset.

The length of a domain element is the number of axis points for which data
can be retrieved. The partition_length is the number of points for which
data is actually defined. If data is missing, this is less than the length.

10. variable-element ::= <variable variable-attributes>
variable-content </variable>

11. variable-content ::= variable-domain extra-attribute-
element*

12. variable-domain ::= <domain> domain-element* </
domain>

Table 6.5 RectGrid Attributes

Attribute Required? GDT? Notes

id Y N Grid identifier

type Y N Grid classification

“gaussian” | “uniform” | “equalarea” |
“generic”

Default: “generic”

latitude Y N Latitude axis name

longitude Y N Longitude axis name

mask N N Name of associated mask variable

order Y N Grid ordering

“yx” | “xy”

Default: “yx”, axis order is latitude,
longitude
Climate Data Management System

CDML Syntax
13. domain-element ::= <domElem name=”axis-name”
start=”Integer” length=”Integer”
partition_length=”Integer”/>

Table 6.6 Variable Attributes

Attribute
Requi
red? CF GDT Notes

id Y N N Variable identifier. Also, the name
of the variable in the underlying
file(s), if name_in_file is unde-
fined.

add_offset N Y Y Additive offset for packing data.
See scale_factor.

associate N N Y IDs of variables containing alterna-
tive sets of coordinates

axis N N Y Spatio-temporal dimensions.

Ex: “TYX” for a variable with
domain (time, latitude, longitude)

Note: for CF, applies to axes only.

cell_methods N Y N The method used to derive data
that represents cell values, e.g.,
“maximum”, “mean”, “variance”,
etc.

comments N N N Comment string

coordinates N Y N IDs of variables containing coordi-
nate data.

datatype Y N N Char, Short, Long, Float, Double,
or String

grid_name N N N Id of the grid

grid_type N N N “gaussian” | “uniform” |
“equalarea” | “generic”

long_name N Y Y Long description of a physical
quantity.
Climate Data Management System 145

Climate Data Markup Language (CDML)

146
6.6.5 Attribute Element

Attributes which are not explicitly defined by the GDT convention are rep-
resented as extra attribute elements. Any dataset, axis, grid, or variable ele-
ment can have an extra attribute as part of its content. This representation is
also useful if the attribute value has non-blank whitespace characters (car-
riage returns, tabs, linefeeds) which are significant.

The datatype is one of: Char, Short, Long, Float, Double, or String.

14. extra-attribute-element ::= <attr name=attribute-name
datatype=”attribute-datatype”> attribute-value </
attr>

missing_value N Y Y Value used for data that are
unknown or missint.

name_in_file N N N Name of the variable in the under-
lying file(s). See id.

scale_factor N Y Y Multiplicative factor for packing
data. See add_offset.

standard_name N Y N Reference to an entry in the stan-
dard name table.

subgrid N N Y Records how data values represent
subgrid variation.

template N N N Name of the file template to use for
this variable. Overrides the dataset
value.

units N Y Y Units of a physical quantity.

valid_max N Y Y Largest valid value of a variable

valid_min N Y Y Smallest valid value of a variable

valid_range N Y Y Largest and smallest valid values
of a variable

Table 6.6 Variable Attributes

Attribute
Requi
red? CF GDT Notes
Climate Data Management System

A Sample CDML Document
6.7 A Sample CDML Document

Dataset ‘sample’ has two variables, and six axes.

Note:

• The file is indented for readability. This is not required; the added whitespace is
ignored.

• The dataset contains three axes and two variables. Variables u and v are func-
tions of time, latitude, and longitude.

• The global attribute cdms_filemap describes the mapping between variables and
files. The entry [[u],[[0,1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,-

,-,u_2002.nc]] indicates that variable u is contained in file u_2000.nc for time
index 0, u_2001.nc for time index 1, etc.

<?xml version="1.0"?>
<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/software/cdms/cdml.dtd">
<dataset

Conventions="CF-1.0"
id ="sample"
calendar="gregorian"
directory=""
cdms_filemap="[[[u],[[0,1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,-,-

,u_2002.nc]]],[[v],[[0,1,-,-,v_2000.nc],[1,2,-,-,v_2001.nc],[2,3,-,-
,v_2002.nc]]]]"

history="
[2002-1-7 18:21:41] /idoru/cdat/3.1/bin/cdscan -d sample -x sample.xml u_2000.nc

u_2001.nc u_2002.nc v_2000.nc v_2001.nc v_2002.nc"
>
<axis

id ="latitude"
length="16"
units="degrees_north"
datatype="Double"
>
[-90. -78. -66. -54. -42. -30. -18. -6. 6. 18. 30. 42. 54. 66.
78.

90.]
</axis>

<axis
id ="longitude"
length="32"
units="degrees_east"
datatype="Double"
>
[0. 11.25 22.5 33.75 45. 56.25 67.5 78.75 90.

101.25 112.5 123.75 135. 146.25 157.5 168.75 180. 191.25
202.5 213.75 225. 236.25 247.5 258.75 270. 281.25 292.5
303.75 315. 326.25 337.5 348.75]
</axis>

<axis
Climate Data Management System 147

Climate Data Markup Language (CDML)

148
id ="time"
partition="[0 1 1 2 2 3]"
calendar="gregorian"
units="days since 2000-1-1"
datatype="Double"
length="3"
name_in_file="time"
>
[0. 366. 731.]
</axis>

<variable
id ="u"
missing_value="-99.9"
units="m/s"
datatype="Double"
>
<domain

>
<domElem name="time" length="3" start="0"/>
<domElem name="latitude" length="16" start="0"/>
<domElem name="longitude" length="32" start="0"/>
</domain>

</variable>
<variable

id ="v"
missing_value="-99.9"
units="m/s"
datatype="Double"
>
<domain

>
<domElem name="time" length="3" start="0"/>
<domElem name="latitude" length="16" start="0"/>
<domElem name="longitude" length="32" start="0"/>
</domain>

</variable>
</dataset>
Climate Data Management System

CHAPTER 7 CDMS Utilities
7.1 cdscan: Importing datasets into CDMS

7.1.1 Overview

A dataset is a partitioned collection of files. To create a dataset, the
files must be scanned to produce a text representation of the dataset. CDMS
represents datasets as an ASCII metafile in the CDML markup language.
The file contains all metadata, together with information describing how the
dataset is partitioned into files. (Note: CDMS provides a direct interface to
individual files as well. It is not necessary to scan an individual file in order
to access it.)

For CDMS applications to work correctly, it is important that the CDML
metafile be valid. The cdscan utility generates a metafile from a collection
of data files.

CDMS assumes that there is some regularity in how datasets are partitioned:

• A variable can be partitioned (split across files) in at most two dimensions. The
partitioned dimension(s) must be either time or vertical level dimensions; vari-
ables may not be partitioned across longitude or latitude. Datasets can be parti-
Climate Data Management System 149

CDMS Utilities

150
tioned by variable as well. For example, one set of files might contain heat
fluxes, while another set contains wind speeds.

Otherwise, there is considerable flexibility in how a dataset can be parti-
tioned:

• Files can contain a single variable or all variables in the dataset.

• The time axis can have gaps.

• Horizontal grid boundary information and related information can be duplicated
across files.

• Variables can be on different grids.

• Files may be in any of the self-describing formats supported by CDMS, includ-
ing netCDF, HDF, GrADS/GRIB, and DRS.

7.1.2 cdscan Syntax

The syntax of the cdscan command is

cdscan [options] file1 file2 ...

or

cdscan [options] -f file_list

where

• file1 file2 .. is a blank-separated list of files to scan

• file_list is the name of a file containing a list of files to scan, one pathname per
line.

Output is written to standard output by default. Use the -x option to specify
an output filename.
Climate Data Management System

cdscan: Importing datasets into CDMS
Table 7.1 cdscan command options

Option Description

-a alias_file Change variable names to the aliases defined in an alias file.
Each line of the alias file consists of two blank separated
fields: variable_id alias. variable_id is the ID of the
variable in the file, and alias is the name that will be sub-
stituted for it in the output dataset. Only variables with
entries in the alias_file are renamed.

-c calendar Specify the dataset calendar attribute. One of "gregorian"
(default), "julian", "noleap", “proleptic_gregorian”,
“standard”, or "360_day".

-d dataset_id String identifier of the dataset. Should not contain blanks or
non-printing characters. Default: "none"

-f file_list File containing a list of absolute data file names, one per
line.

-h Print a help message.

-i time_delta Causes the time dimension to be represented as linear, pro-
ducing a more compact representation. This is useful if the
time dimension is very long. time_delta is a float or integer.
For example, if the time delta is 6 hours, and the reference
units are ‘hours since xxxx’ , set the time delta to 6. See
the -r option. See Note 2.

-j scan time as a vector dimension. Time values are listed indi-
vidually. Turns off the -i option.

-l levels Specify that the files are partitioned by vertical level. That
is, data for different vertical levels may appear in different
files. levels is a comma-separated list of levels containing
no blanks. See Note 3.

-m levelid name of the vertical level dimension. The default is the ver-
tical dimension as determined by CDMS. See Note 3.
Climate Data Management System 151

CDMS Utilities

152
Notes:

1. Files can be in netCDF, GrADS/GRIB, HDF, or DRS format, and can be listed
in any order. Most commonly, the files are the result of a single experiment, and
the ’partitioned’ dimension is time. The time dimension of a variable is the
coordinate variable having a name that starts with ’time’ or having an attribute
axis=’T’. If this is not the case, specify the time dimension with the -t option.
The time dimension should be in the form supported by cdtime. If this is not the
case (or to override them) use the -r option.

-p template Add a file template string, for compatibility with pre-V3.0
datasets. ’cdimport -h’ describes template strings.

-q Quiet mode.

-r time_units time units of the form "units since yyyy-mm-dd

hh:mi:ss", where units is one of "year", "month",

"day", "hour", "minute", "second".

-s suffix_file Append a suffix to variable names, depending on the direc-
tory containing the data file. This can be used to distinguish
variables having the same name but generated by different
models or ensemble runs. ’suffix_file’ is the name of a file
describing a mapping between directories and suffixes.
Each line consists of two blank-separated fields: direc-

tory suffix. Each file path is compared to the directories
in the suffix file. If the file path is in that directory or a sub-
directory, the corresponding suffix is appended to the vari-
able IDs in the file. If more than one such directory is found,
the first directory found is used. If no match is made, the
variable ids are not altered. Regular expressions can be
used: see the example in the Notes section.

-t timeid id of the partitioned time dimension. The default is the name
of the time dimension as determined by CDMS. See Note 1.

-x xmlfile Output file name. By default, output is written to standard
output.

Table 7.1 cdscan command options

Option Description
Climate Data Management System

cdscan: Importing datasets into CDMS
2. By default, the time values are listed explicitly in the output XML. This can
cause a problem if the time dimension is very long, say for 6-hourly data. To
handle this the form ’cdscan -i delta <files>’ may be used. This generates a
compact time representation of the form <start, length, delta>. An exception is
raised if the time dimension for a given file is not linear.

3. Another form of the command is ’cdscan -l lev1,lev2,..,levn <files>’. This
asserts that the dataset is partitioned in both time and vertical level dimensions.
The level dimension of a variable is the dimension having a name that starts
with "lev", or having an attribute "axis=Z". If this is not the case, set the level
name with the -m option.

4. An example of a suffix file:

/exp/pr/ncar-a _ncar-a
/exp/pr/ecm-a _ecm-a
/exp/ta/ncar-a _ncar-a
/exp/ta/ecm-a _ecm-a

For all files in directory /exp/pr/ncar-a or a subdirectory, the corresponding vari-
able ids will be appended with the suffix ’_ncar-a’. Regular expressions can be
used, as defined in the Python ’re’ module. For example, The previous example
can be replaced with the single line:

/exp/[^/]*/([^/]*) _\g<1>

Note the use of parentheses to delimit a group. The syntax \g<n> refers to the n-
th group matched in the regular expression, with the first group being n=1. The
string [^/]* matches any sequence of characters other than a forward slash.

7.1.3 Examples
cdscan -c noleap -d test -x test.xml [uv]*.nc
cdscan -d pcmdi_6h -i 0.25 -r ’days since 1979-1-1’ *6h*.ctl

7.1.4 File Formats

Data may be represented in a variety of self-describing binary file for-
mats, including

• netCDF, the Unidata Network Common Data Format

• HDF, the NCSA Hierarchical Data Format
Climate Data Management System 153

CDMS Utilities

154
• GrADS/GRIB, WMO GRIB plus a GrADS control file (.ctl)
The first non-comment line of the control file must be a dset specification.

• DRS, the PCMDI legacy format.

7.1.5 Name Aliasing

A problem can occur if variables in different files are defined on dif-
ferent grids. What if the axis names are the same? CDMS requires that
within a dataset, axis and variable IDs (names) be unique. What should the
longitude axes be named in CDMS to ensure uniqueness? The answer is to
allow CDMS IDs to differ from file names.

If a variable or axis has a CDMS ID which differs from its name in the file,
it is said to have an alias. The actual name of the object in the file is stored
in the attribute name_in_file. cdscan uses this mechanism (with the -a and -
s options) to resolve name conflicts; a new axis or variable ID is generated,
and the name_in_file is set to the axis name in the file.

Name aliases also can be used to enforce naming standards. For data
received from an outside organization, variable names may not be recog-
nized by existing applications. Often it is simpler and safer to add an alias to
the metafile rather than rewrite the data.

7.1.6 Generating Metadata for a File

A single file can be accessed directly in CDMS, without ingesting.
However, frequently it is useful to generate an ASCII description of the
metadata in the file. To do this, use the filename as the template argument:

cdimport . clt.nc sample
Climate Data Management System

APPENDIX A CDMS Classes
CDMS classes are grouped into internal, interface, and user classes.
Only user classes are meant to be used directly. An interface class defines
the common interface of the classes derived from it. For simplicity this
document describes the interface classes, and only discusses the derived
user classes in the few cases where the interface differs.

Transient classes are not associated with a container such as a Dataset or
CdmsFile. They are ‘in-memory’ classes. In contrast, persistent classes such
as Axis and DatasetVariable are associated with a container. Modification of
an instance of the class persists after the program ends, that is, I/O is gener-
ated to a file.

Note that the TransientVariable class is derived from class array in module
MA, the masked array class. Masked arrays may be thought of as contain-
ing: an array of data, a mask of ones and zeros, and a “fill value”. Complete
documentation is available in the Numerical Python package at http://
sourceforge.net/projects/numpy.
Climate Data Management System 155

CDMS Classes

156

A

MA.a

Va
t
e

TransientVariable

DatasetVariable

FileVariable

P
base

Module MA (masked

Interface classes

User Classes

Internal classes
PropertiedClasses.PropertiedClass

CdmsObj

InternalAttributesClass

bstract Abstract

Dataset CdmsFile

TransientRectGrid

Slab

rray

Axisriable AbstractRectGrid

Abstrac
Databas

TransientAxis

Axis

FileAxis

RectGrid

FileRectGrid

LDA
Data

CDMS Classes

array), PropertiedClasses

cuDataset

AbstractGrid
Climate Data Management System

APPENDIX B Version Notes
B.1 Version 3.0 Overview

CDMS version 3.0 is a significant enhancement of previous versions.
The major changes were:

1. CDAT/CDMS was integrated with the Numerical Python masked array class
MA.MaskedVariable. The MV submodule was added as a wrapper around MA.

2. Methods that read data, such as subRegion, subSlice, and the slice operations,
return instances of class TransientVariable. The plot and regrid modules were
modified to handle masked array input. The specifiers time=..., latitude=..., etc.
were added to the I/O routines.

3. The class TransientVariable was added.

4. A number of new functions were added, notably subRegion and subSlice, which
return instances of TransientVariable.

5. When a masked array is returned from a method, it is “squeezed”: singleton
dimensions are removed. In contrast, transient variables are not squeezed. I/O
functions have a squeeze option. The method setAutoReshapeMode was
removed.

6. Internal attributes are handled in the InternalAttributes class. This allows
CDMS classes to be subclassed more readily.

7. The class Variable was renamed DatasetVariable.
Climate Data Management System 157

Version Notes

158
8. The cu module was emulated in cdms. cu and cdms methods can be mixed.

9. The code was modularized, so that Python, CDMS, and Numerical Python can
be built and installed separately. This significantly enhances the portability of
the code.

B.2 V3.0 Details

B.2.1 AbstractVariable

• Functions getDomain, getSlice, rank, regrid, setMissing, size, subRegion, and
subSlice were added.

• The functions getRegion, getSlice, getValue, and the slice operators all return an
instance of MA, a masked array. Singleton dimensions are squeezed.

• The functions subRegion and subSlice return an instance of TransientVariable.
Singleton dimensions are not squeezed.

• The xxSlice and xxRegion functions have keywords time, level, latitude, and
longitude.

• The input functions have the keyword squeeze.

• AbstractVariable inherits from class Slab. The following functions previously
available in module cu are Slab methods: getattribute, setattribute, listdimat-
tributes, getdimattribute, listall, and info.

• AbstractVariable implements arithmetic functions, astype.

• The write function was added.

B.2.2 AbstractAxis

• The functions asComponentTime, asRelativeTime, clone, getAxisIds, getAxis-
Index, getAxisList, getAxisListIndex, mapIntervalExt were added.

• subaxis was renamed subAxis for consistency.

• Generalized wraparound was implemented, to handle multiple cycles, reversing,
and negative strides. By default, coordinate intervals are closed. The intersec-
tion options ‘n’,’e’,’b’,and ’s’ were added to the interval indicator - see map-
IntervalExt.
Climate Data Management System

V3.0 Details
B.2.3 AbstractDatabase

• The function open is synonymous with openDataset.

B.2.4 Dataset

• The function open is synonymous with openDataset.

B.2.5 cdms module

• The functions asVariable, isVariable, and createVariable were added.

• The function setAutoReshapeMode was removed. It is replaced by the squeeze
option for all I/O functions.

B.2.6 CdmsFile

• The function createVariable has a keyword fill_value. The datatype may be a
Numeric/MA typecode.

• The function write was added.

B.2.7 CDMSError

• All errors are an instance of the class CDMSError.

B.2.8 AbstractRectGrid

• The function createGaussianGrid was added.

B.2.9 InternalAttributes

• The class InternalAttributes was added. It has methods add_internal_attribute,
is_internal_attribute, and replace_external_attributes.

B.2.10 TransientVariable

• The class TransientVariable was added. It inherits from both AbstractVariable
and MA.

• The cdms module function createVariable returns a transient variable.
Climate Data Management System 159

Version Notes

160
• This class does not implement the functions getPaths or getTemplate.

B.2.11 MV

• The MV submodule of cdms was added.
Climate Data Management System

APPENDIX C cu Module
The cu module is the original CDAT I/O interface. As of version 3 it
is emulated in the cdms module. It is maintained for backward compatibil-
ity.

The cu classes are Slab, corresponding to TransientVariable in CDMS, and
cuDataset, corresponding to Dataset in CDMS.

C.1 Slab
Climate Data Management System 161

cu Module

162
Table C.1 Slab Methods

Type Definition

Various getattribute(name)

Get the value of an attribute.

name is the string name of the attribute. The following special
names can always be used: ‘filename’, ‘comments’,
‘grid_name’, ‘grid_type’, ‘time_statistic’, ‘long_name’,
‘units’.

Various getdimattribute(dim, field)

Get the value of a dimension attribute.

dim is the dimension number, an integer in the range 0..rank-1.

field is a string, one of: "name", "values", "length", "units",
"weights", "bounds".

None info(flag=None, device=sys.stdout)

Print slab information.

If flag is nonzero, dimension values, weights, and bounds are
also printed.

Output is sent to device.

List listall(all=None)

Print slab information.

If all is nonzero, dimension values, weights, and bounds are
also printed.
Climate Data Management System

cuDataset
C.2 cuDataset

List listdimattributes(dim, field)

List dimension attributes.

Returns a list of string attribute names which can be input to
getdimattribute.

dim is the dimension number, an integer in the range 0..rank-1.

field is a string, one of: "name", "values", "length", "units",
"weights", "bounds".

None setattribute(name, value)

Set an attribute.

name is the string name of the attribute.

value is the value of the attribute.

Table C.2 cuDataset Methods

Type Definition

None cleardefault()

Clear the default variable name.

None default_variable(vname)

Set the default variable name.

vname is the string variable name.

Table C.1 Slab Methods

Type Definition
Climate Data Management System 163

cu Module

164
Array dimensionarray(dname, vname=None)

Values of the axis named dname.

dname is the string axis name.

vname is the string variable name. The default is the variable
name set by default_variable.

Axis dimensionobject(dname, vname=None)

Get an axis.

dname is the string name of an axis.

vname is a string variable name. The default is the variable
name set by default_variable.

Various getattribute (vname, attribute)

Get an attribute value.

vname is a string variable name.

attribute is the string attribute name.

String getdimensionunits (dname,vname=None)

Get the units for the given dimension.

dname is the string name of an axis.

vname is a string variable name. The default is the variable
name set by default_variable.

Various getglobal (attribute)

Get the value of the global attribute.

attribute is the string attribute name.

Table C.2 cuDataset Methods

Type Definition
Climate Data Management System

cuDataset
Variable getslab (vname, *args)

Read data for a variable.

vname is the string name of the variable.

args is an argument list corresponding to the dimensions of the
variable. Arguments for each dimension can be:

(1) ‘:’ or None -- select the entire dimension

(2) Ellipsis -- select entire dimensions between the ones given.
(3) a pair of successive arguments giving an interval in world
coordinates.

(4) a CDMS-style tuple of world coordinates e.g. (start, stop,
‘cc’)

List listall (vname=None, all=None)

Get info about data from the file.

vname is the string name of the variable.

If all is non-zero, dimension values, weights, and bounds are
returned as well.

List listattribute (vname=None)

Return a list of attribute names.

vname is the name of the variable. The default is the variable
name set by default_variable.

List listdimension (vname=None)

Return a list of the dimension names associated with a vari-
able.

vname is the name of the variable. The default is the variable
name set by default_variable.

List listglobal ()

Return a list of the global attribute names.

Table C.2 cuDataset Methods

Type Definition
Climate Data Management System 165

cu Module

166
List listvariable ()

Return a list of the variables in the file.

None showall (vname=None, all=None, device=sys.stdout)

Print a description of the variable.

vname is the string name of the variable.

If all is non-zero, dimension values, weights, and bounds are
returned as well.

Output is sent to device.

None showattribute (vname=None, device=sys.stdout)

Print the attributes of a variable.

vname is the string name of the variable.

Output is sent to device.

None showdimension (vname=None, device=sys.stdout)

Print the dimension names associated with a variable.

vname is the string name of the variable.

Output is sent to device.

None showglobal (device=sys.stdout)

Print the global file attributes.

Output is sent to device.

None showvariable (device=sys.stdout)

Print the list of variables in the file.

Table C.2 cuDataset Methods

Type Definition
Climate Data Management System

Index

A
arange 68
argsort 69
arrayrange 68
asarray 69
asComponentTime 36
asRelativeTime 36
assignValue

axis 36
variable 85

astype 85
asVariable 25
average 70

C
CDML

Climate Data Markup Language 135
element 136
identifier 138
tags 136

cdms module 25
CdmsFile

as a dictionary 45
calling as a function 45

cdscan 150
choose 70
clone 85
close 45

database 53
dataset 65

concatenate 70
connect 53
copyAxis 46
copyGrid 46
count 70
createAxis

cdmsFile 35, 46
dataset 35
transient 25, 35

createDataset 44, 62
Climate Data Management System 167

168
createEqualAreaAxis 26, 35
createGaussianAxis 26, 35
createGaussianGrid 26, 73
createGenericGrid 27, 73
createGlobalMeanGrid 27, 74
createRectGrid 74

cdmsFile 47, 73
dataset 65, 73
transient 28, 73

createUniformGrid 28, 74
createUniformLatitudeAxis 29, 35
createUniformLongitudeAxis 29, 35
createVariable 29, 47, 82, 83, 84
createVariableCopy 48
createZonalGrid 29, 74
crossSectionRegrid 86
crossSectionRegridder 115

D
database 50
Dataset

as a dictionary 65
calling as a function 64

designateCircular 37
designateLatitude 37
designateLevel 37
designateLongitude 37
designateTime 37
DRS 154

G
getAutoBounds 29
getAxis 65, 74, 86
getAxisIds 86
getAxisIndex 86
getAxisList 87
getAxisListIndex 87
getBounds

axis 38
grid 75

getCalendar 38
getDomain 88
getGrid 66, 88
getLatitude
Climate Data Management System

grid 75
variable 88

getLevel 88
getLongitude

grid 75
variable 88

getMask 75
getMissing 88
getObject 59
getOrder

grid 75
variable 89

getPaths
dataset 66
variable 89

getTemplate 90
getTime 90
getType 76
getValue

axis 38
getVariable 66
getWeights 76
GRIB 154

H
HDF 153

I
id 50
isCircular 38
isLatitude 39
isLevel 39
isLinear 39
isLongitude 39
isMaskedVariable 70
isTime 39
isVariable 30

L
len 39, 58, 90
listDatasets 53

M
mapInterval 39
Climate Data Management System 169

170
mapIntervalExt 40
masked_array 68
masked_equal 70
masked_greater 70
masked_greater_equal 70
masked_less 71
masked_less_equal 71
masked_not_equal 71
masked_object 68
masked_outside 71
masked_values 68
masked_where 71
maximum 71
minimum 71

N
name alias 154
netCDF 153

O
ones 68
open 54, 62
openDataset 30, 44, 54, 62
order string 89
order2index 30
orderparse 31
outerproduct 71

P
plot method 130
power 71
pressureRegrid 90, 115
product 71

R
rank 90
regrid 91
regrid function 120
Regridder 116
relative name 50
repeat 72
reshape 69
resize 69
Climate Data Management System

S
search result 58
search result entry 59
searchFilter 55
searchPredicate 58
set_default_fill_value 72
setAutoBounds 31
setAxis 91
setAxisList 91
setBounds

axis 42
grid 77

setCalendar 42
setClassifyGrids 31
setMask 77
setMissing 91
setType 77
size 92
sort 72
subaxis 43
subGrid 78
subGridRegion 79
subRegion 92
subSlice 93
sum 72
sync

cdmsFile 48
dataset 66

T
tag 50
take 72
template Specifiers 63
transpose 72, 80
typecode

axis 43
variable 93

W
where 72
write 49

X
XML 135
Climate Data Management System 171

172
Z
zeros 69
Climate Data Management System

	Climate Data Management System Version 3.3
	Table of Contents
	CHAPTER 1 Introduction
	1.1 Overview
	1.2 Variables
	1.3 File I/O
	1.4 Domains and Axes
	1.5 Attributes
	1.6 Masked values
	1.7 File Variables
	1.8 Dataset Variables
	1.9 Grids and Regridding
	1.10 Time types
	1.11 Plotting data
	1.12 Databases

	CHAPTER 2 CDMS Python Application Programming Interface
	2.1 Overview
	Table 2.1 Python types used in CDMS

	2.2 A first example
	2.3 cdms module
	Table 2.2 cdms module functions
	Table 2.3 Class Tags

	2.4 CdmsObj
	Table 2.4 Attributes common to all CDMS objects
	Table 2.5 Getting and setting attributes

	2.5 Axis
	Table 2.6 Axis Internal Attributes
	2.5.1 partition attribute
	Table 2.7 Axis Constructors
	Table 2.8 Axis Methods
	Table 2.9 Axis Slice Operators

	2.6 CdmsFile
	Table 2.10 CdmsFile Internal Attributes
	Table 2.11 CdmsFile Constructors
	Table 2.12 CdmsFile Methods
	Table 2.13 CDMS Datatypes

	2.7 Database
	2.7.1 Overview
	Table 2.14 Database Internal Attributes
	Table 2.15 Database Constructors
	Table 2.16 Database Methods

	2.7.2 Searching a database
	Table 2.17 SearchResult Methods
	Table 2.18 ResultEntry Attributes
	Table 2.19 ResultEntry Methods

	2.7.3 Accessing data
	2.7.4 Examples of database searches

	2.8 Dataset
	Table 2.20 Dataset Internal Attributes
	Table 2.21 Dataset Constructors
	Table 2.22 Open Modes
	Table 2.23 Template Specifiers
	Table 2.24 Dataset Methods

	2.9 MV module
	Table 2.25 Variable Constructors in module MV
	Table 2.26 MV functions

	2.10 RectGrid
	Table 2.27 RectGrid Internal Attributes
	Table 2.28 RectGrid Constructors
	Table 2.29 RectGrid Methods

	2.11 Variable
	2.11.1 cu interface support
	Table 2.30 Variable Internal Attributes
	Table 2.31 Variable Constructors
	Table 2.32 Variable Methods
	Table 2.33 Variable Slice Operators
	Table 2.34 Index and Coordinate Intervals

	2.11.2 Selectors
	Table 2.35 Selector keywords

	2.11.3 Selector examples

	2.12 Examples

	CHAPTER 3 cdtime Module
	3.1 Time types
	3.2 Calendars
	3.3 Time Constructors
	Table 3.1 Time Constructors

	3.4 Relative Time
	Table 3.2 Relative Time Members

	3.5 Component Time
	Table 3.3 Component Time Members

	3.6 Time Methods
	Table 3.4 Time Methods

	CHAPTER 4 Regridding Data
	4.1 Overview
	4.1.1 Horizontal regridder
	4.1.2 Pressure-level regridder
	4.1.3 Cross-section regridder

	4.2 regrid module
	Table 4.1 Regridder Constructor

	4.3 regridder functions
	Table 4.2 Regridder function

	4.4 Examples

	CHAPTER 5 Plotting CDMS data in Python
	5.1 Overview
	5.2 Examples
	5.2.1 Example: plotting a horizontal grid
	5.2.2 Example: using plot keywords.
	5.2.3 Example: plotting a time-latitude slice
	5.2.4 Example: plotting subsetted data

	5.3 plot method
	Table 5.1 plot keywords

	CHAPTER 6 Climate Data Markup Language (CDML)
	6.1 Introduction
	6.2 Elements
	Table 6.1 CDML Tags

	6.3 Special Characters
	Table 6.2 Special Character Encodings

	6.4 Identifiers
	6.5 CF Metadata Standard
	6.6 CDML Syntax
	6.6.1 Dataset Element
	Table 6.3 Dataset Attributes

	6.6.2 Axis Element
	Table 6.4 Axis Attributes

	6.6.3 Grid Element
	Table 6.5 RectGrid Attributes

	6.6.4 Variable Element
	Table 6.6 Variable Attributes

	6.6.5 Attribute Element

	6.7 A Sample CDML Document

	CHAPTER 7 CDMS Utilities
	7.1 cdscan: Importing datasets into CDMS
	7.1.1 Overview
	7.1.2 cdscan Syntax
	Table 7.1 cdscan command options

	7.1.3 Examples
	7.1.4 File Formats
	7.1.5 Name Aliasing
	7.1.6 Generating Metadata for a File

	APPENDIX A CDMS Classes
	APPENDIX B Version Notes
	B.1 Version 3.0 Overview
	B.2 V3.0 Details
	B.2.1 AbstractVariable
	B.2.2 AbstractAxis
	B.2.3 AbstractDatabase
	B.2.4 Dataset
	B.2.5 cdms module
	B.2.6 CdmsFile
	B.2.7 CDMSError
	B.2.8 AbstractRectGrid
	B.2.9 InternalAttributes
	B.2.10 TransientVariable
	B.2.11 MV

	APPENDIX C cu Module
	C.1 Slab
	Table C.1 Slab Methods

	C.2 cuDataset
	Table C.2 cuDataset Methods

	Index

